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“What I cannot create, I do not understand.”

Richard Feynman, 1918 - 1988

4/28



1913

John Watson

1878 - 1958

B.F. Skinner

1904 - 1990

Psychology as the behaviorist views it is a purely objective natural science. Its theoretical 
goal is the prediction and control of behavior. Introspection forms no essential part of its 

method nor is the scientific value of its data dependent upon…
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Step 1: Find an interesting aspect of cognition

Anderson, 1990, Psychological Review

Five Easy Steps

Step 2: Identify the underlying computational problem, the environment constraints

Step 3: Work out the optimal solution to that problem

Step 4: See how well that solution corresponds to human behavior 

(read as: do some experiments!) 

Step 5: Refine steps 2-4.
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Anderson, 1990, Psychological Review

Five Easy Steps

Step 2: Identify the underlying computational problem, the environment constraints

Step 3: Work out the optimal solution to that problem

Step  
(read as: do some experiments!) 

Step  fi

MIND III: Contextual Influence
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Motivational biases 
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Sketching the Mechanism

Bai, Fiske, & Griffiths, 2022, PsychSci

People believe that groups differ from each 
other even when they do not. Why?

Tom Griffiths Susan Fiske
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Sutton & Barto, 2018, Explore vs. exploit dilemma in reinforcement learning

Multi-Armed Bandit Problem
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rt(k) ∼ Bern(θk)

θk
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Thompson, 1933; Agrawal & Goyal, 2012, PMLR

Thompson Sampling
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Beta(α, β)

̂θk ∼ Beta(αk, βk)

(αxt, βxt) ← (αxt + rt, βxt + 1 − rt)
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Control group: random sampling
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How many times did 
the agent interact 
with each group?

- Random-sampling agent, prior beta (1,1), 4 arms, identical rewards ( =0.9), 40 rounds, 100 seeds.θ
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Interim summary:

Perceived group differences emerge from agents making adaptive exploration:

• How: Make new decisions based on past (selective) experiences.

• Why: Utility-maximizing but (not belief) maximizing.

• Tradeoff: Early positive experiences discourage (exhaustive) exploration.

Sketching the Mechanism: Implications
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Enriching the Context

Bai, Griffiths, & Fiske, 2024, JEP:General

Stereotypes entail multi-dimensional contents.

Is exploration per se the operating variable?

Tom Griffiths Susan Fiske
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Enriching the Context: Intuition

Hiring as Contextual Multi-Armed Bandit
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Enriching the Context: Formalism

Li, Chu, Langford, Schapire, 2010, WWW; Chapelle & Li, 2011, NeurIPS

Hiring as Contextual Multi-Armed Bandit
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Enriching the Context: Experiments

Control group: random hiring
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Treatment group: exploratory hiring
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Enriching the Context: Experiments

Average treatment effect between exploratory vs. random hiring (N = 1300)

Default:

Interventions:

Ideal:

Exploratory hiring  

Exploratory hiring (replication)   

Random hiring  

Decision Entropy More DiversifiedMore Stratified
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Stereotype Dispersion More DissimilarMore Similar
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Interventions:
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Random hiring  

Average treatment effect between exploratory vs. random hiring (N = 1300)



Enriching the Context: Implications

Motivational biases 

• Identity


• Dominance

Cognitive biases 

• Limited memory


• Selective attention

e.g., de-bias training

In hiring practices:
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Sample biases  

• Unequal group size


Group differences  

• Gender 
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Enriching the Context: Implications

An alternative intervention: 

Design a system that encourages continuous exploration.

In hiring practices:
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Enriching the Context: Intervention

Decision Entropy More DiversifiedMore Stratified
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Thomas Schelling

1921 - 2016
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