

Globally Inaccurate Stereotypes Can Result from Locally Rational Exploration:

Evidence from a Formal Model and Human Experiments

Xuechunzi Bai

Susan T. Fiske

Thomas L. Griffiths

(invited revision PsychSci)

Motivation

Inaccurate stereotypes are prevalent and consequential

Motivation

Inaccurate stereotypes are prevalent and consequential

Existing research

Motivational and Cognitive

Existing research

Motivational and Cognitive

- Motivational (as a group member):
 - Identity
 - Dominance

Existing research

Motivational and Cognitive

- Motivational (as a group member):
 - Identity
 - Dominance

- Cognitive (as an information processor):
 - Categorization
 - Selective attention

Our work: A functional minimal-process paradigm

A simple exploratory sampling

Our work: A functional minimal-process paradigm

A simple exploratory sampling

- Minimal:
 - Without motivational bias
 - Without cognitive limits

Our work: A functional minimal-process paradigm

A simple exploratory sampling

- Minimal:
 - Without motivational bias
 - Without cognitive limits
- Functional:
 - Optimal solution in the environment given

Our hypothesis

Globally inaccurate stereotypes can result from locally rational exploration

Our hypothesis

Globally inaccurate stereotypes can result from locally rational exploration

By adopting a functional/rational analysis,

we are NOT saying social stereotypes are accurate or morally right.

Our hypothesis

Globally inaccurate stereotypes can result from locally rational exploration

- An intuitive example
- A formal model and simulations
- Two human experiments
- Implications

- The goal is rational/minimal: Maximize the chance of being helped
 - Not motivated to demean groups

- The goal is rational/minimal: Maximize the chance of being helped
 - Not motivated to demean groups
- The process is rational/minimal: Belief updating
 - Not unable to absorb new information

- The goal is rational/minimal: Maximize the chance of being helped
 - Not motivated to demean groups
- The process is rational/minimal: Belief updating
 - Not unable to absorb new information
- The outcome is inaccurate: Find an ostensibly best group
 - Although unintended, inaccurate impressions about the under-explored groups

Globally inaccurate stereotypes can result from locally rational exploration

- An intuitive example
- A formal model and simulations
- Two human experiments
- Implications

Multi-Armed Bandit Problem

Explore v. Exploit dilemma in Reinforcement Learning (Sutton & Barto, 2018)

Thompson Sampling

Initial structure: No prior bias

Environment structure: Identical high reward

Initial structure: No prior bias

Sampling strategy: <u>Thompson</u> v. <u>Random</u>

Environment structure: Identical reward

Partner choices: How many times did the model interact with each group?

Initial structure: No prior bias

Reward estimations: What is the estimated reward for each group?

Sampling strategy: Thompson v. Random

Identical reward (μ = 0.9), No prior, Random sampling

Identical reward (μ = 0.9), No prior, Random sampling

Identical reward (μ = 0.9), No prior, Random sampling

Identical reward (μ = 0.9), No prior, Thompson sampling

Identical reward (μ = 0.9), No prior, Thompson sampling

Identical reward (μ = 0.9), No prior, Thompson sampling

Selective interactions and biased impressions emerged when

Selective interactions and biased impressions emerged when

The environment gives identical and high rewards;

Prior bias is unnecessary;

The agent uses adaptive sampling strategies

Selective interactions and biased impressions emerged when

The environment gives identical and high rewards;

Prior bias is unnecessary;

The agent uses adaptive sampling strategies

How about human participants?

Globally inaccurate stereotypes can result from locally rational exploration

- An intuitive example
- A formal model and simulations
- Two human experiments
- Implications

A city with 100,000 residents

Ready to play?

Let's meet some new Tufas, Aimas, Rekus, and Wekis!

Tufa

X.

Weki

Independent variables:

- Underlying rewards:
 - Unbeknown to participants, identical ($\mu = 0.9$) v. different average rewards
- Prior stereotypes:
 - No description v. Rekus are warm and competent
- Sampling strategy:
 - You choose v. You meet [random]

Dependent variables:

Partner choices:

You choose a [group] vs. You meet a [group]

Reward estimations:

 For each group, how many times out of 100 do you think working with a person from that group would result you in earning 1 point?

400 online participants in Study 1 (N = 2000 in Study 2)

Partner choices

reward = identical & bias = no

sampling = meet 20 25 5 Choice frequency

Reward estimations

400 online participants in Study 1 (N = 2000 in Study 2)

Partner choices

reward = identical & bias = no

Reward estimations

400 online participants in Study 1 (N = 2000 in Study 2)

Reward estimations

reward = identical & bias = no

400 online participants in Study 1 (N = 2000 in Study 2)

How do humans behave in an environment with identical and high rewards & no prior bias

- Replicated model predictions.

How do humans behave in an environment with identical and high rewards & no prior bias

- Replicated model predictions.

Selective interactions and biased impressions?

- Yes.

How do humans behave in an environment with identical and high rewards & no prior bias

- Replicated model predictions.

Selective interactions and biased impressions?

- Yes.

Thompson sampling v. Random sampling

- Consistent with rational strategy thus biased.

Confounds and Mechanisms

You choose v. You meet [random draw]

Confounds and Mechanisms

You choose v. You meet [random draw]

1. Selective sample or sense of control?

2. Order of rewards or mere presence of choices?

Confounds and Mechanisms

You choose v. You meet [random draw]

- 1. Selective sample or sense of control?
 - Yoke both choices and rewards
- 2. Order of rewards or mere presence of choices?
 - Yoke choices but not rewards

Globally inaccurate stereotypes can result from locally rational exploration

- An intuitive example
- A formal model and simulations
- Two human experiments
- Implications

Conclusion

WHY do people develop inaccurate stereotypes in the first place?

Conclusion

WHY do people develop inaccurate stereotypes in the first place?

- We offer one minimal condition that inaccurate stereotypes can develop.
 - Without requiring group motives or cognitive limits.

Conclusion

WHY do people develop inaccurate stereotypes in the first place?

- We offer one minimal condition that inaccurate stereotypes can develop.
 - Without requiring group motives or cognitive limits.
- A functional minimal-process explanation.
 - The mind adapts to a particular social environment.
 - Rational local choices still lead to inaccurate overall impressions.

Implication

Inaccurate stereotypes can result from rational exploration

- Social interventions.
 - Diversity: Habituate to de-segregated environment.
 - Contact: Encourage open-minded exploration.

Bai, Ramos, Fiske, 2020, As diversity increases, people paradoxically perceive social groups as more similar, PNAS

Implication

Inaccurate stereotypes can result from rational exploration

- Social interventions.
 - Diversity: Habituate to de-segregated environment.
 - Contact: Encourage open-minded exploration.
- Algorithmic interventions.
 - ML fairness: The origin of unequal base rates.
 - Filter bubble: Recommendation systems.

Thanks to my advisors for collaboration and labs for feedback

Thank you!

Our hypothesis

Inaccurate stereotypes can result from rational explorations

- An intuitive example
- A formal model and simulations
- Two human experiments
- Implications

Multi-Armed Bandit Problem

Explore v. Exploit dilemma in Reinforcement Learning (Sutton & Barto, 2018)

$$\theta_k$$

$$r_{t(k)} \sim Bern(\theta_k)$$

$$\sum_{t=1}^{T} r_{t(k)}$$

$$R = E\left[\sum_{t=1}^{T} Q_{t(k^*)} - \sum_{t=1}^{T} r_{t(k)}\right]$$

Explore v. Exploit dilemma in Reinforcement Learning (Sutton & Barto, 2018)

$$\theta_k$$

$$r_{t(k)} \sim Bern(\theta_k)$$

$$\sum_{t=1}^{T} r_{t(k)}$$

$$R = E\left[\sum_{t=1}^{T} Q_{t(k^*)} - \sum_{t=1}^{T} r_{t(k)}\right]$$

Explore v. Exploit dilemma in Reinforcement Learning (Sutton & Barto, 2018)

$$\theta_k$$

$$r_{t(k)} \sim Bern(\theta_k)$$

$$\sum_{t=1}^{T} r_{t(k)}$$

$$R = E\left[\sum_{t=1}^{T} Q_{t(k^*)} - \sum_{t=1}^{T} r_{t(k)}\right]$$

Explore v. Exploit dilemma in Reinforcement Learning (Sutton & Barto, 2018)

$$\theta_k$$

$$r_{t(k)} \sim Bern(\theta_k)$$

$$\sum_{t=1}^{T} r_{t(k)}$$

$$R = E\left[\sum_{t=1}^{T} Q_{t(k^*)} - \sum_{t=1}^{T} r_{t(k)}\right]$$

Explore v. Exploit dilemma in Reinforcement Learning (Sutton & Barto, 2018)

Thompson Sampling

$$\theta_k \sim Beta(\alpha, \beta)$$

$$E = \frac{\alpha}{\alpha + \beta}$$

$$S_{k(t)}, F_{k(t)}$$

$$E = \frac{\alpha + S_{k(t)}}{\alpha + S_{k(t)} + \beta + F_{k(t)}}$$

$$\theta_k \sim Beta(\alpha, \beta)$$

$$E = \frac{\alpha}{\alpha + \beta}$$

$$S_{k(t)}, F_{k(t)}$$

$$E = \frac{\alpha + S_{k(t)}}{\alpha + S_{k(t)} + \beta + F_{k(t)}}$$

$$\theta_k \sim Beta(\alpha, \beta)$$

$$E = \frac{\alpha}{\alpha + \beta}$$

$$S_{k(t)}, F_{k(t)}$$

$$E = \frac{\alpha + S_{k(t)}}{\alpha + S_{k(t)} + \beta + F_{k(t)}}$$

$$\theta_k \sim Beta(\alpha, \beta)$$

$$E = \frac{\alpha}{\alpha + \beta}$$

$$S_{k(t)}, F_{k(t)}$$

$$E = \frac{\alpha + S_{k(t)}}{\alpha + S_{k(t)} + \beta + F_{k(t)}}$$

Our hypothesis

Inaccurate stereotypes can result from rational explorations

- An intuitive example
- A formal model and simulations
- Two human experiments
- Implications

Confounds and Mechanisms

You choose v. You meet [random draw]

Confounds and Mechanisms

You choose v. You meet [random draw]

1. Selective sample or sense of control?

2. Order of rewards or mere presence of choices?

Confounds and Mechanisms

You choose v. You meet [random draw]

- 1. Selective sample or sense of control?
 - Yoke both choices and rewards
- 2. Order of rewards or mere presence of choices?
 - Yoke choices but not rewards

Partner choices: replication

2000 online participants (500 in each 1 by 4)

partner choices by condition

Partner choices: yoke

2000 online participants (500 in each 1 by 4)

Reward estimations: replication

2000 online participants (500 in each 1 by 4)

reward estimates by condition

pndition

Reward estimations: selective sample or sense of control

2000 online participants (500 in each 1 by 4)

reward estimates by condition

Reward estimations: selective sample or sense of control

2000 online participants (500 in each 1 by 4)

reward estimates by condition

Reward estimations: order of rewards or mere presence of choices 2000 online participants (500 in each 1 by 4)

reward estimates by condition

Reward estimations: order of rewards or mere presence of choices 2000 online participants (500 in each 1 by 4)

reward estimates by condition

Interim summary

Replicating prior experiment?

- Yes

Interim summary

Replicating prior experiment?

- Yes

Selective samples or sense of control?

- Selective samples

Interim summary

Replicating prior experiment?

- Yes

Selective samples or sense of control?

- Selective samples

Order of rewards or mere presence of choices?

- Order of rewards

Appendix

Related works

- Denrell, Experience sampling
- Gureckis, Learning trap
- Fiedler, Reward rich

Analytic solutions

Dynamic programming

