10

15

20

Manuscript: Confidential
Edited September 2025

Collective Bias Emerges Even from Rational Social Learning

Authors: Bufan Gao', Xuechunzi Bai'*

Affiliations:
"Department of Psychology, University of Chicago, Chicago, IL 60637, USA.

*Corresponding author. Email: baix@uchicago.edu

Abstract:

Group decisions can outperform individual ones, but they can also fail. The same mechanism
that fuels success -- rationally integrating information from others -- can also create bias. Using
hiring in labor markets as a relevant context, we simulate networks of Bayesian learners,
generative agents, and human participants making hiring decisions independently or collectively.
In all three cases, integrating social information improves efficiency when one option is best, but
also produces inequality: agents converge on a few options even though all are equally qualified.
Our experiments show that collective bias can emerge purely from individually rational and fully
transparent social learning, even without any loss of information. Pooling information
compresses experiences, reduces exploration, and amplifies early randomness, revealing a
general mechanism of emergent inequality.

One-sentence summary: Collective bias can emerge spontaneously even when everyone is
rational and transparent, not despite social learning, but because of it.
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Main Text

No individual mind alone can achieve what humanity has accomplished collectively. Learning
from other minds enables groups of individuals to better memorize words (/-2), estimate objects
(3-5), identify experts (6,7), and solve complex problems (8-70). Yet social learning can also
lead the collective astray. It can produce conformity to incorrect judgments (/7,12), spread
spurious beliefs (/3), elevate low-quality cultural trends (/4,15), and propagate prejudiced
attitudes (/6). In explaining such failures, social learning offers a distinct level of analysis,
beyond individual limitations and structural constraints (/7): an in-between level that focuses on
the interactive processes by which individuals learn from one another. At this level, existing
accounts often attribute unsuccessful coordination to information loss: people rely on public
information while ignore private signals (15, /8), change information content due to memory
constraints (/9-21), or restrict interactions to like-minded others (22-23). These explanations
assume collective failures arise from distortions already present during interaction. We argue
otherwise: the very act of rational social learning can itself generate collective bias, even in the
absence of preexisting conditions. In this view, collective bias is an emergent property.

The labor market offers a concrete and consequential example. Social groups are not equally
distributed in the labor market, creating conditions for managers to statistically discriminate
against people from different groups when individuating information is lacking (24-26). Social
scientists tend to understand such inequality as the amplification of bias. At the individual level,
managers prefer in-group candidates or rely on imperfect heuristics (27-29). At the structural
level, initial market conditions exclude certain groups or restrict their access to resources (30-
32). At the interactive level, worker information is opaque in the market exchanges, or referrals
channel information to similar others (33,34). While these mechanisms are plausible, they frame
inequality as something being amplified rather than created. In contrast, we propose that unequal
representation in labor markets can emerge as a result of many rational interactive behaviors,
such as decision-makers sharing, integrating, and using the information from their peers. This
view parallels the origins of other suboptimal collective dynamics, where uncoordinated
microscopic behaviors give rise to systematic patterns (35-37). It also points to a new class of
interventions at the interactive level: to achieve a fairer labor market, policy should move beyond
making information transparent or accurate. Instead, it should design network structures that
diffuse valuable information efficiently while preserving independence and diversity.

To isolate the mechanism that rational social learning alone is sufficient to create collective bias,
we model a simplified hiring market in which all candidate groups are equally productive and
decision-makers are unbiased. In this stylized scenario, managers repeatedly evaluate candidates
from several groups, where each decision is costly but informative: managers can learn more
about a group by hiring it, but must balance exploring novel options with exploiting what has
worked in the past (38-40). Managers may rely only on their own experience (asocial learning)
or also incorporate the experiences of their peers (social learning). Concretely, we build a multi-
agent framework and simulate three types of agents role-playing as hiring managers under one of
the two conditions. These agents vary in their levels of rationality and transparency in how they
make decisions: First, Bayesian learners are fully specified, rational, and transparent in their
belief updating and decision making, ensuring any disparities cannot be attributed to existing
bias. Second, large language model based generative agents incorporate extensive prior social
knowledge and alignment goals, predicting how fairness-aware agents approach this challenge
(41). Third, human participants recruited from online platforms provide rare empirical evidence
to a literature dominated by non-human simulations (4-6). This design allows us to causally
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identify whether social learning alone can create labor market inequality, and to compare
Bayesian models, real-world Al systems, and human participants under matched conditions.

Formally, we model the hiring process as a multi-agent, multi-armed bandit problem (42; Fig. 1).
Each agent represents a hiring manager who selects from a fixed set of candidate groups,
modeled as arms of a multiarmed bandit whose success probabilities are unknown. Each round,
agents independently choose one group and observe a binary outcome of success or failure,
which they use to update internal beliefs about candidate productivity (Fig. 1B). The objective is
to maximize cumulative hiring success over time, which requires navigating the classic
exploration—exploitation tradeoff (43): exploring uncertain groups may uncover better options
but also carries the risk of poor outcomes, while exploiting known groups can yield safer returns.
We represent the multi-agent system as an undirected graph, where each node corresponds to an
agent and an edge connects two nodes if those agents share information (42). When agents are
connected, they share their choices and corresponding outcomes from that round, without
withholding or changing any information. This shared information is then incorporated into each
agent’s current beliefs, enabling learning not just from personal experience but also from peers.

We quantify two outcome metrics: efficiency and inequality (SM). Efficiency is defined as the
total cumulative rewards earned by agents at the end of the study, reflecting how effectively the
group of agents identifies and hires optimal candidates. Inequality is measured as the entropy of
the final hiring distribution, which captures how random the decisions are. Lower entropy means
hires are concentrated in a few groups, while higher entropy means hires are more evenly spread.
To investigate the drivers of these outcomes, we manipulate two system features: reward
distribution and market structure. The reward distribution determines whether candidate groups
differ in productivity. In the unequal-productivity condition, one group on average is more
productive than the others and the success rates are drawn from a uniform distribution between
0.1 and 0.9. In the equal-productivity condition, all groups are on average equally productive
with the same success rate (SM). The other key variable, market structure, controls how
information flows among agents. In the asocial learning condition, agents are isolated in the
graph and update beliefs solely based on personal experiences (Fig. 1C). In the social learning
condition, agents are fully connected and incorporate others’ choices and outcomes into their
own beliefs for future updates (Fig. 1A). This direct manipulation of information flow allows us
to isolate the effects of social learning on market inequality from other forms of bias at the
interactive level: because all information is shared transparently (/8), in its original form without
revision (21), or selective targeting (23), any differences between the two markets can therefore
be attributed to the simple fact of whether information is shared.

Bayesian Learners. In the first set of experiments, we model agents using an explicitly defined
Bayesian updating rule. Each agent uses the Thompson sampling algorithm to make decisions in
which the agent samples from the posterior distribution of the success probability for each group
and chooses the group with the highest sampled value (44). In each network, there are ten
Bayesian agents hiring from ten candidate groups over 1000 rounds (SM). In the unequal-
productivity condition, social learning substantially improves group-level efficiency (Fig. 2A).
Pooling information from other agents yields 2.1% higher cumulative rewards than learning in
isolation (b =2.10%, 95% CI [2.01%, 2.18%], p < 0.001). Agents in the social learning condition
are able to discover the optimal group approximately 170 rounds earlier than those in the asocial
learning condition. These results confirm the wisdom-of-crowds hypothesis (2): when one option
is better, pooling information boosts efficiency and increases accuracy. However, when all
groups are equally productive, learning from each other does not help (Figs. 2D, 2G): although
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market efficiency was comparable across conditions (b = 0.01%, 95% CI [-0.09%, 0.10%], p =
0.85), agents in the social learning condition create substantially more inequality than those in
the asocial learning condition (b =—-0.371, 95% CI [-0.411,-0.331], p < 0.001). To
contextualize this effect, agents in the social learning condition generate a market in which some
groups receive fewer than 1% of total hires, while over 50% of hires concentrate in a small
subset of groups. In contrast, agents in the asocial learning condition create a more equal market,
with each group receiving approximately 10% of hires and no single group exceeding 20% of
total selections (Figs. 3A, 3D). In other words, rational Bayesian learners that learn from each
other reach a misleading consensus on which group is optimal where none objectively exists.

Generative Agents. The explicitly defined belief updating and decision-making process in
Bayesian learners improves interpretability, but it lacks realism. There is a burgeoning interest in
using large language model based generative agents to simulate social dynamics (40), and we
document what would happen in such a case. Moreover, newer models are trained to align with
egalitarian values to be fair and unbiased (45) more than Bayesian learners, providing an
interesting contrast. In the second set of experiments, we substitute Bayesian learners with
OpenAl’s GPT-40, the newest model at the time of this experiment (46). We build a multi-agent
system in which a central moderator interacts with each generative agent through structured
language prompts. Each interaction begins with a system message establishing the task context
and decision rules. Next, an assistant message reminds the agent of its previous choice and
outcome. Finally, a user message presents feedback, either from the agent’s own past decisions
(asocial learning) or from the entire network (social learning), and prompts the agent to make a
new decision. Because GPT-40 is not designed for numerical inference, the system translates
observed results into preprocessed belief summaries over candidate groups (see full prompt
designs in SM). Each network is configured with ten generative agents hiring from ten candidate
groups over 200 rounds of decisions (SM). Overall, the patterns we observe are consistent with
and even more pronounced than those for Bayesian learners. In the unequal-productivity
condition, learning from other agents helps the group of agent managers to find the optimal
candidate much faster, yielding 4.75% (95% CI [3.11%, 5.90%], p < 0.001) higher cumulative
rewards as compared to asocial learning condition. Social learning improves efficiency (Fig. 2B).
However, when the average productivities of the candidate groups are identical, social learning
creates inequality (Figs. 2E, 2H): agent managers create a labor market that shows 58.4% lower
entropy than those who learn in isolation (b =—1.713, 95% CI [-1.876, —1.550], p < 0.001). To
contextualize this effect, manager agents in the social learning condition hire about 80% of the
same group despite all candidates being equally productive. In contrast, manager agents in the
asocial learning condition hired more evenly with each group receiving 5—15% of total hires
(Figs. 3B, 3E). In addition to demonstrating how social learning can limit the system from
exploring further, this study suggests that emergent collective biases can be orders of magnitude
more severe in value-aligned generative agents as compared to Bayesian learners, raising
fairness concerns for future adoption of Al systems in dynamic environments such as hiring.

Human Participants. In the final set of experiments, we simulate a collaborative hiring market
with online human participants (N = 2,000). We design an incentive-compatible, multi-player
multi-round game in which participants role-play as part of a hiring committee. Their goal is to
make good hiring decisions, and the hiring outcomes are translated into their actual bonus
payments (SM). Each network is configured with ten hiring managers, and they need to choose
from ten groups of job candidates whose group identity is defined by arbitrary color of their icon
in a total of 50 rounds of decisions (SM). Participants are randomly assigned to one of the 2-by-2
conditions: equal versus unequal productivity and asocial versus social learning. The sample has
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a mean age of 37.8 years, is 53.8% female, and is racially representative of the larger American
online population (70.6% White, 9.7% Black, 6.3% Latinx, 6.2% Asian). These demographic
variables are balanced across conditions, thus do not contribute to the observed effects (SM).
Consistent with our previous observations, social learning creates inequality in the simulated
labor market when all candidates are equally productive. Specifically, when there is one optimal
group, learning from other participants indeed helps the group to identify the optimal candidates
much faster, resulting in earning 17.01% higher cumulative rewards than those in the asocial
learning condition (95% CI [11.78%, 21.88%], p < 0.001; Fig. 2C). However, when there is no
single optimal group, learning from other participants does not help (Figs. 2F, 2I). On the metric
of inequality, entropy at the final round is 48.5% lower in the social learning condition than in
the asocial learning condition (b =—1.496, 95% CI [-1.636, —1.356], p < 0.001), indicating that
participants concentrate heavily on limited number of groups of candidates in their hiring
decisions rather than exploring all groups equally. In over 78% of trials, a single group received
more than 50% of final-round hires (Figs. 3C, 3F). Note that this experiment runs on a relatively
short horizon of 50 rounds, nonetheless, unequal allocation of hiring decisions emerges early.
Participants’ reflections in the social learning condition reveal how pooled information guided
their decisions (SM). Several note adapting to group-level trends: “...watched which one the
other people were voting for and followed their lead...”, “...one option quickly emerged as the
most productive...”, and “...virtually every other person was selecting that person helped to
solidify my choices.” By comparison, participants in the asocial learning condition emphasize
independent learning from direct outcomes. Comments highlight exploration, tracking personal
success rates, and forming individual beliefs: “...early on it was trial-and-error to test out several
groups...”, “...I tried to diversify my selections during the first several rounds...”, and “...colors
that gave immediate bad feedback made me not want to select that color again.”

In short, across all three simulations, unequal group shares in the hiring market emerge
endogenously. When there is one optimal group whose candidates are most productive, learning
from others enables agents to identify it more quickly, increasing efficiency. However, when all
candidate groups are equally productive, the same process causes stagnation: Bayesian learners,
generative agents, and human participants coordinate in a fully connected network have created
inequality, not despite sharing information, but because of it. To understand boundary
conditions, we systematically varied sampling strategies, the number of agents and groups, the
agents’ priors, the baseline productivity of the candidate groups, and the initial states (SM). We
found that specific parameterizations may affect the magnitude of inequality, but not its
direction, and social learning consistently creates collective bias. When information is shared,
even small early differences in rewards across arms become group-wide signals, pulling all
agents toward whichever arm appears slightly better. This synchronization reduces exploration,
concentrates choices, and drives down entropy. At the same time, adopting exploratory sampling
strategies, introducing optimistic priors, and increasing the number of groups all helped to
increase exploration and thus reduce, though not eliminate, collective bias.

Discussion. Our studies are clearly unlike real labor markets in several ways. For example, we
expect other biases — individual preferences, decision heuristics, structural barriers, and loss of
information in transmission — all to play important roles, amplifying the effects we observe. We
also suspect that markets vary in their interconnectedness, whereas our data capture only the two
extremes. Although these differences limit the immediate relevance of our studies to real-world
labor markets, our findings nevertheless suggest that labor market inequality, one consequential
form of collective bias, can emerge naturally from the simple opportunity to learn from others.
This pattern aligns with, though does not prove, observations in Mexican migrant networks (47),
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where jobseekers begin with diverse occupational choices, but later, through increasing peer-
based job seeking, cluster into a limited set of agricultural and unskilled jobs. Admittedly, any of
these biases could contribute to such stratification, but our data suggest that even in the absence
of existing bias, rationally integrating the experiences of others is sufficient.

This mechanism provides novel policy insights. When inequality is framed as an amplification of
existing bias, policies typically aim to revise those biases (48). At the individual level, skill
training programs aim to equip workers with desired skills, and decision-making workshops aim
to change cognitive biases in managers’ minds. At the structural level, promoting minority
candidates serves to remedy an already-tainted market composition. At the interactive level,
making private information publicly available aims to reduce the side effects of information
cascades (49). Our work offers a different takeaway: even when job candidates are equally
qualified, the market has balanced representations and is fully connected, and agents are
Bayesian-rational who share what they know with full transparency, inequality can still emerge.
Pooling information compresses experiences, reduces exploration, and amplifies early random
fluctuations. The challenge, then, is not simply to correct known biases, but to design networks
that compress information efficiently without crowding out exploration.

We have emphasized consistency across three types of agents, but their differences are equally
revealing. First, neither generative agents nor human participants match the rational behavior of
Bayesian learners. While it is qualitatively true that there are main treatment effects across three
agents, this gap indicates that in our setup, neither generative agents nor human participants
behave in a perfectly Bayesian way. Future work can study mechanisms to close this gap.
Second, generative agents in our study produce the greatest market inequality with the least
variation, outperforming human participants and Bayesian learners in this regard. Their
heightened sensitivity to early feedback and consistent reluctance to explore despite value
alignment suggest that artificial intelligence agent systems, especially those in socially
networked dynamic environments, may be particularly prone to self-reinforcing patterns. Beyond
existing de-biasing strategies focused on updating pretraining data, adding finetuning data, or
adjusting decision thresholds (45), our findings highlight the need to preemptively design
network structures that can maintain efficient yet equitable information flow, which will become
increasingly important when these agents interact dynamically with the world.
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A B Hiring Game: Select Your Worker c
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Fig. 1. Collective hiring as a multi-agent multi-armed bandit: The task is modeled as a multi-
agent multi-armed bandit problem, where each hiring manager (agent, denoted as V' in A and C)
selects from K candidate groups (arm, denoted as colored human icon in B) with unknown
success rates U,, modeled as i.i.d. Bernoulli variables, aiming to maximize cumulative reward in
sequential decisions. (A) Social learning. Managers observe choices and outcomes of everyone
in their group in a fully connected graph connecting agents V via edges E, denoted G = (V, E), to
update their beliefs on each arms’ successes and failures, denoted S = (a, 8,). (C) Asocial
learning. Managers observe choices and outcomes of their own in a disconnected graph, denoted
G = (V, @), to update their beliefs. (B) Hiring task. Managers repeatedly make hiring decisions
by selecting one of ten candidates. Each round, they choose one candidate from a group and
receive binary feedback: success shown as thumbs up or failure shown as thumbs-down.
Managers are Bayesian learners, generative agents, and human participants, respectively.
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Fig. 2. Experimental results from Bayesian learners, generative agents, and human
participants: (A—C) When there is one optimal candidate group, social learning improves
efficiency in all environments. We plot relative performance gains between the two conditions
with overall, top 20%, middle 20%, and bottom 20% stratified runs. (A) Bayesian learners earn
about 2% more cumulative rewards in all quantiles (p < 0.001), indicating stable improvements.
(B) GPT-40 agents show larger gains, averaging 4-5% (p < 0.001), with slightly stronger
improvements in the top and bottom subsets. (C) Human participants achieve the largest
increases, about 20% more rewards (p < 0.001), with consistently strong gains across quantiles.
(D-F) When there is no single optimal group, social learning consistently increases inequality.
(D) Bayesian learners see a decrease in entropy of 0.371 (11.35%; b =-0.371, 95% CI = [-
0.411,-0.331], p <0.001). (E) GPT-40 agents exhibit a sharper drop of 1.713 (58.39%,; b =—
1.713, 95% CI = [-1.876, —1.550], p < 0.001). (F) Human participants show a reduction of 1.496
(48.52%; b =-1.496, 95% CI = [-1.636, —1.356], p < 0.001), with over 78% of trials ending in
majority hiring of a single group. (G—I) Entropy dynamics over time. (G) Bayesian learners
show an initial rise, then decline 5% after round 20, stabilizing at 11.35% lower in the social than
the asocial learning. (H) GPT-40 agents decline monotonically, ending with entropy 2.35x% lower
than Bayesian learners. (I) Human participants show a similar pattern, ending with entropy 2.12x
lower in the social learning than in the asocial learning condition.
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Fig. 3. Example final-round entropy from representative simulation runs for each agent type
under social learning (A—C) and asocial learning (D—F) conditions. Entropy reflects the
distributional balance of hiring decisions across candidate groups, with lower values indicating
greater concentration. Under asocial learning (D-F), markets remain relatively balanced. Under
social learning (A—C), however, inequality emerges in all agents. (A) Bayesian learners retain
more exploratory behavior, yet still produce concentrated outcomes. (B) GPT-40 agents and (C)
human participants show rapid convergence on one or two groups, reflecting stark reductions in
diversity and early lock-in to dominant options.
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1 Formalism

1.1 Multi-Armed Bandit (MAB)

We begin with the classical stochastic multi-armed bandit (MAB) problem, which formalizes sequential
decision-making under uncertainty [9]. Imagine a decision-maker repeatedly choosing among several
options, often called “arms,” each with an unknown payoff. With every choice, the agent receives some
reward and gradually learns about which arms are better. The central challenge is balancing exploration
(trying new or uncertain arms to gain information) with exploitation (sticking to the best-know arm to
maximize rewards).

Single-agent structure. Formally, consider a single agent interacting with a set of N arms, indexed
by k € {1,..., N}, over a finite horizon of T rounds, indexed by ¢ € {1,...,T}. Ateach round ¢, the
agent selects one arm a; € {1, ..., N} and observes a binary reward

r: ~ Bernoulli(ug, ),

where the reward distribution of arm k is a bounded random variable in [0, 1] with unknown mean .
The agent’s objective is to maximize its cumulative reward

M~

Y,
t=1

equivalently to minimize the expected cumulative regret

T
R(T) =T = ) Elnl.
t=1
where y* = maxy py is the mean reward of the optimal arm.

Bayesian inference. In the main text, we focus on how Bayesian rational learners approach this
problem, building on prior research [2]. In the Bayesian formulation, the agent maintains for each arm
k a posterior distribution over the success probability u. This posterior is represented as

wi ~ Beta(al, ),

where o/ and 8] denote the cumulative number of observed successes and failures of arm & up to
round ¢. Parameters are initialized with an uninformative prior ag = ,82 = 1. After observing the
reward r, from the selected arm a,, the posterior parameters are updated as

o't 0‘;, +1{r; =1}, t+1 ﬁ;t +1{r; = 0}.

a a



1.2 Multi-Agent Multi-Armed bandit (MAMAB)

Core to this research, we extend the single-agent MAB framework to a setting with many decision-
makers, also known as distributed decision-making [7]. Instead of one individual agent in isolation,
we now consider a system of M agents, indexed by i € {1,..., M}, who all interact with the same set
of N arms. Each agent repeatedly faces the same basic tradeoff of whether to explore or exploit, but
their choices and outcomes can be influenced by the presence of others.

Multi-agent structure. Formally, at each round ¢, agent i selects an arm a; , and receives a binary
reward
ri,r ~ Bernoulli(ug, ).

Distinctive in this setup is the flow of information among agents. We represent this by an undirected
graph G = (V, E), wherenodes V = {1, ..., M} correspond to agents and edges E denote bidirectional
information flow. That is, if (i, j) € E, then agent i observes not only its own action and reward, but
also those of agent j, and vice versa, see Figure S1. Thus, the observation set available to agent i at
round ¢ is

Oi:={(aisri)yU{(ajsrjs)  jeN@G},

where N (i) denotes the set of agents directly connected to agent 7 in the graph G.

alffkl =)+ Z Ha=k,r=1}, ﬁf+k1 =B+ Z 1{a=k,r=0}.
(a,r)€0; (a,r)€0;

Here, the summations run over all observations in O; ;. The indicator function 1- adds one whenever
an observed action corresponds to arm k and returns the specified reward (success for « and failure
for B). In other words, each agent counts how many successes and failures it has seen for each arm,
combining its own data with that of its linked neighbors.

A B Hiring Game: Select Your Worker c
[ ] ® & o o o o
[ ] - b o & - -
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; : Round n+1 ] hires & hires
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Figure S1: Adapted from the main text where we construct collective hiring decisions as a multi-agent
multi-armed bandit problem. A. and C. are the general structures of the agents (multi-agent), and B is
the sequential decision process (multi-armed bandit).



2 Metrics

2.1 Efficiency

We evaluate group performance in terms of efficiency, defined as the cumulative reward obtained by
all agents over the horizon T. Formally,

T

M
EfF(T) = > > ris.

i=1 t=1

Equivalently, efficiency can be expressed as the expected cumulative reward,

M T
B[Ef(T)] = ), ) Hawss
i=1 t=1

which captures the system’s ability to maximize long-term gains. High efficiency indicates that agents
are collectively identifying and exploiting productive options, whereas low efficiency reflects wasted
opportunities or persistent exploration of suboptimal arms.

Relative efficiency. To isolate the effect of information sharing, we compare efficiency under social
learning to efficiency under asocial learning. The relative efficiency gain is defined as

AEff(T) — Eﬂsocial(T) _ Eﬁasocial(T)’

or, in normalized form,
Eﬂ:social (T)
-1

Eﬁasocial (T)

This quantity captures the improvement in group performance that arises from social learning. In
other words, a positive value indicates that the group obtains more rewards when the agents learn from
each other than when they rely only on individual experiences, whereas a negative value indicates that
information sharing reduces performance, and a value near zero suggests little to no measurable benefit
from social learning.



2.2 Inequality

We evaluate bias by quantifying inequalities in allocation across arms, operationalized as the empirical
distribution of cumulative arm selections, i.e., the relative frequencies with which each arm is chosen

over horizon T'. Let
M T
(1) = Y > Wai, =k}

i=1 t=1
be the total number of times arm k is selected by the group up to time 7. Using this, we define the
empirical allocation distribution over arms as

n(T)  ne(T)

N = . k=1,...N.
Zj=1nj(T) MT

pi(T) =

where p (T') represents the relative frequency with which arm & is chosen. We measure inequality via
the Shannon entropy of this distribution

N
Hum(T) = = ) pi(T) log pi(T).
k=1

Entropy attains its maximum log N when selections are perfectly balanced across arms and decreases
as selections become concentrated. Lower Hymy(T) therefore indicates greater concentration on a
subset of arms.

Relative inequality. To isolate the effect of social learning, we compare entropy under social learning
to asocial learning. We report the difference scores between the two conditions

AHarm(T) — Hsocial(T) _ H;\ﬁglcial(T)’

arm

and the normalized ratio

arm

Hasocia] (T)
arm
Hence, a negative AH,:i, (T') indicates that social learning increases concentration relative to the asocial
case, thus more likely to generate collective-level bias.

Hsocial (T)



3 Bayesian Learners

We conducted a series of ablation studies to examine how different parameters in the Bayesian simula-
tions influence the outcomes of our design. In particular, we varied sampling strategies (Section 3.1),
scaled the number of agents and arms (Section 3.2), tested different agent priors (Section 3.3), ma-
nipulated levels of ground truth productivity (Section 3.4), and sampled across all initial states of the
network (Section 3.5). In a nutshell, while these specifications affected the magnitude of the core
phenomenon, they did not alter its direction: across a wide range of modeling assumptions, social
learning consistently generated lower entropy, that is, greater collective bias, than asocial learning.

3.1 Varying sampling strategies

Overview. There are different sampling algorithms to solve the multi-armed bandit problem. We
studied three commonly used strategies — Thompson sampling (TS) [8], e-greedy [9], and upper
confidence bound (UCB) [6] — to understand how they influence the behaviors of the network.

3.1.1 Thompson sampling

In Thompson sampling, each agent maintains a posterior distribution over the success probability of
each arm k based on past observations. At each round, the agent samples a parameter value

t t t
Qi,k ~ Beta(ai,k,,ﬁi’k)

for every arm k and selects the arm with the largest sampled value, breaking ties uniformly at random.
The full procedure is summarized in Algorithm 1. The agent then updates their posterior distributions
following the observation and updating rules defined in Section 1.

Algorithm 1 Thompson sampling

1: Initialize priors {a9, BY}2_ .

2: fort=1toT do

3 for each arm k do

4 Sample 6] ~ Beta(a}, 5;).

5: end for

6 Select a, € arg maxy 0;( > break ties uniformly
7 Proceed with observation and belief update.

8: end for

Given a Beta-Bernoulli model, the reward probability 6 is assumed to follow Beta(a, 8) prior. The
mean of this distribution is

a
E[0] = u = ,
[0] = u P
and the variance is 8
a
Var(6) = .
) (@ +B)2(a+p+1)
For large a + (3, the variance can be approximated as
p(l—p)
Var(8) ~ ————=, = ,n=a+
ar(0) " Yy n=a+p

Intuitively, this mean reflects the current best estimate of the reward probability, while the variance
captures uncertainty, shrinking as the effective sample size n grows.



3.1.2 e-greedy

In e-greedy, each agent selects the arm with the highest posterior mean with probability 1 — £, and
explores uniformly at random among all arms with probability £. The posterior mean of arm k at

round ¢ is given by
t

@; i
t t *
@+ B g

The procedure is summarized in Algorithm 2, followed by the updating rules defined in Section 1.

o
Hix =

Algorithm 2 ¢-greedy

. Tnitiali : 0 gO\N
1: Initialize priors {@, B} },_;-
2: fortr=1toT do
3: for each arm k do

t
@

4: Compute posterior mean y; = B
5: end for
6: if Uniform(0, 1) < & then
7: Select a; uniformly at random from {1, ..., N}. > Explore
8: else
9: Select a; € arg maxy u} > Exploit
10: end if
11: Proceed with observation and belief update.
12: end for

Intuitively, this agent chooses an option it currently believes is best, but with a small probability &,
it instead picks a random option. A bigger £ means more exploration.

3.1.3 Upper confidence bound

In upper confidence bound, each agent selects the arm with the largest index formed by its posterior
mean and an exploration bonus. For arm & at round ¢, the posterior mean is

t
k

t t "
@ + By

a

Hy =
We define the effective number of pulls for arm & directly from the Beta—Bernoulli sufficient statistics,

ni(t) = o) + By,

so that the pull count is consistent with the belief-update process. The exploration bonus is then

B 2Int
O =\ (L O]

UCBY, = u} + ck(2).

and the sampling index is

At each round, the agent selects the arm with the largest index, breaking ties uniformly at random. The
procedure is summarized in Algorithm 3, followed by the updating rules defined in Section 1.



Algorithm 3 Upper confidence bound

1: Initialize priors {@), B9} .
2: forr=1to T do

3: for each arm k do
4 :“2 = aflikbt > Compute posterior mean
5 ni(t) = aj + B > Compute effective pulls
6 ck(t) = 4 /m. > Compute exploration bonus
7: UCB), = p}, +ci(2). > Compute index
8 end for
9 Select a; € arg max; UCB],

10 Proceed with observation and belief update.

11: end for

Intuitively, this strategy encourages exploration. The index of each arm consists of two components:
the posterior mean and the uncertainty, which decreases as the arm is sampled more frequently. It
encourages the agent to revisit the arms with limited sampling.

Setting. We compared the above three sampling strategies in a benchmark environment with M = N =
10 agents and arms, equal-productivity condition g = 0.9, and T = 1000 rounds with 100 simulation
runs. We also systematically varied the initial states of the network, see below. We compared three
sampling strategies: Thompson sampling with an uninformative prior Beta(a, 8) = (1, 1), e-Greedy
with € € {0.1,0.5,0.9}, and upper confidence bound. For each strategy, we compared final-round
entropy between social and asocial learning conditions. The lower the value is, the more inequality in
a given network.

Results. For each sampling strategy, we ran Ordinary Least Squares regression with learning con-
dition as the independent variable and entropy, as defined in Section ??, as the outcome variable.
First, Thompson sampling showed a lower entropy in the social than the asocial learning condition
(b =-0.364,95% CI [—0.369, —0.358], p < 0.001), resulting in a 11.13% reduction in entropy. Next,
e-greedy suggested entropy depends on &: with £ = 0.1 inequality was largest (b = —0.976, 95% CI
[-1.023,-0.929], p < 0.001; 36.03% reduction), with & = 0.5 the effect was moderate (b = —0.311,
95% CI [-0.325,-0.297], p < 0.001; 9.53% reduction), and with € = 0.9 showed minimal differences
between the two conditions (b = —0.0170, 95% CI [-0.0179, —-0.0161], p < 0.001; 0.51% reduction).
Lastly, upper confidence bound produced the least inequality: the entropy was very close to zero,
although still statistically significantly different from zero given the large sample size (b = —0.011,
95% CI [-0.012,-0.011], p < 0.001; entropy reduction by 0.34%). Figure S2 shows entropy on
the left columns and entropy trajectories over time on the right columns. For highly exploratory
strategies such as upper confidence bound and greedy search with £ = 0.9, the trajectories under social
and asocial learning were nearly indistinguishable, indicating that exploration can reduce inequality.
However, strategies with moderate or lower exploration such as greedy search with e = 0.1 or £ = 0.5,
or Thompson sampling, entropy first declined sharply as agents concentrated on a small set of arms
before rising again, reflecting initial lock-in effects followed by partial recovery.

Implication. These results demonstrate that exploration plays a central role in reducing inequality.
Conversely, they also suggest that strategies with rational updating — without strong built-in incentives
to explore — can easily recreate inequality when agents are connected in a network. For methodological
clarity, we use Thompson sampling for the main text, as it strikes a balance between exploration and
exploitation and has been shown to resemble human exploratory behavior [2].
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3.2 Scaling the number of agents and arms

Overview. Within the multi-agent multi-armed bandit framework, the scale of the environment is
defined by two parameters: the number of agents M (decision makers) and the number of arms N
(available options). We systematically varied both M and N to assess how the number of agents and
options of the decision space influence the dynamics of inequality under social learning.

Setting. We varied the scale of the environment by drawing M, N € {2,5, 10,20, 100, 1000} and
tested all pairwise combinations. Each configuration was run for 7 = 1000 rounds with 100 inde-
pendent replicates under both social and asocial learning. Agents used Thompson sampling with an
uninformative prior Beta(1, 1) in the equal-productivity setting ux = u = 0.9 for all k. To control for
sensitivity to initial conditions, for each (M, N) we tested every distinct distribution of agents across
arms (i.e., each unique unlabeled initial allocation) when the total number of such allocations was no
more than 100. For very large systems where the number of possible allocations exceeded 100 (for
example, when both M and N are in the hundreds or thousands), we limited the analysis to a randomly
selected sample of 100 allocations drawn from the full set of possibilities. For each (M, N) pair, we
compared the final-round entropy between social and asocial learning conditions.

Results. Regression analyses across the full (M, N) grid showed that social learning consistently
reduced entropy relative to asocial learning (p < 0.001 for all comparisons), detailed in Figure S3. The
magnitude of this reduction, however, varied systematically with scale. On the one hand, increasing the
number of arms weakened the concentration effect of social learning: the more independent options
in the network, the slower the agents converged on limited options, thus explored longer. On the other
hand, increasing the number of agents initially amplified the effect, as more agents reinforced emerging
preferences, but this effect plateaued once the number of agents matched or exceeded the number of
arms. Beyond this critical point, additional agents did not further reduce entropy, because pooling
already ensured collapse onto a narrow subset of arms. Quantitatively, the marginal effect of adding
arms was stronger than the marginal effect of adding agents. If we think of the number of arms as the
number of social groups in a society, this analysis indicates that the fewer groups a society has, the
more unequal treatment due to social learning. We should expect to see minimal inequality when each
person is treated individually without being categorized into any higher-level groups.

Implication. These findings demonstrate that inequality or collective bias is more sensitive to the
number of options than to the number of agents. Adding agents amplifies convergence pressures but
does not fundamentally change the trajectory once the population is sufficiently large. By contrast,
increasing the number of arms consistently sustains exploration and mitigates stratification. Mechanis-
tically, inequality under social learning arises because pooling information magnifies early stochastic
successes into group-wide advantages: once an arm happens to pull ahead, all agents are drawn toward
it, and the concentration persists even if the leader shifts over time. In applied domains, this implies that
interventions that expand the set of available options may be more effective at preserving diversity than
simply increasing the number of participants. To balance computational tractability with experimental
costs, we selected M = N = 10 as the baseline configuration for the main study.
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3.3 Testing different priors

Overview. Thompson sampling (TS) behavior depends critically on the choice of prior. We therefore
examined how alternative prior specifications—optimistic, pessimistic, and uninformative—shape the
emergence of inequality under social learning. This analysis evaluates whether prior beliefs bias agents
toward concentration or exploration, thereby altering collective outcomes.

Setting. We simulated M = N = 10 agents and arms under the equal-reward setting with ¢ = 0.9.
Each configuration was run for 7 = 1000 rounds with 100 replicates, systematically varying the prior
specification across 42 initial states. We examined three prior belief distributions:

 Uninformative prior Beta(1, 1), corresponding to no prior counts (no bias).
* Optimistic prior Beta(9, 1), equivalent to assuming many prior successes (optimistic belief).
* Pessimistic prior Beta(1,9), equivalent to assuming many prior failures (pessimistic belief).

We measured the social-asocial effect on final-round entropy, fitting separate models for each prior
specification.

Results. Regression analyses revealed strong differences across prior types. With the optimistic
prior Beta(9, 1), entropy reduction was 0.111 (b = —0.111, 95% CI [-0.120,-0.101], p < 0.001),
corresponding to a 3.36% relative decline. With the uninformative prior Beta(1, 1), entropy reduction
was 0.364 (b = —0.364, 95% CI [-0.369,-0.358], p < 0.001), an 11.13% decline. By contrast,
the pessimistic prior Beta(1,9) generated an extreme effect: entropy reduction of 2.459 (b = —2.459,
95% CI [-2.499, -2.419], p < 0.001), equivalent to a 99.19% collapse. Figure S4 illustrates the
trajectory of entropy over time. With uninformative or optimistic priors, asocial learning produced a
rapid early increase in entropy that then stabilized, while social learning maintained consistently lower
entropy. Under pessimistic priors, by contrast, entropy declined immediately and stabilized at near-zero
levels, indicating rapid convergence of all agents onto a single arm. These patterns confirm that prior
specification strongly shapes the degree and speed of inequality, with optimistic priors weakening
inequalities, uninformative priors producing moderate disparities, and pessimistic priors amplifying
convergence, leading to the most unequal outcome.

Implications. These findings underscore the sensitivity of multi-agent dynamics to initial beliefs.
Two conclusions follow. First, across all priors, social learning produced more unequal outcomes than
asocial learning, reinforcing our main claim that information sharing systematically drives concentra-
tion. Second, the direction of bias matters: optimistic priors can partially alleviate inequality, while
pessimistic priors magnify it dramatically, collapsing the system onto a single option. In real-world
terms, this suggests that overly negative preconceptions about groups can rapidly escalate into extreme
segregation once information is shared, whereas positive priors may mitigate but not eliminate inequal-
ity. This is consistent with real-world observations that a breakthrough environment (better outcome
than expectation) curates spiraling discrimination, whereas a breakdown environment (worse outcome
than expectation) creates self-correction [3] To find a middle ground, in the main text, we adopted
the uninformative prior Beta(1, 1), as it represents unbiased initial beliefs and avoids seeding artificial
optimism or pessimism, thereby isolating the effect of social learning.
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3.4 Manipulating ground truth

Overview. Beyond initial conditions, the strength of the underlying productivity signal may also
shape inequality dynamics. We therefore tested whether varying the absolute success probability of all
options alters the extent to which social learning drives concentration. This analysis evaluates whether
stronger or weaker performance signals amplify or attenuate the emergence of inequality.

Setting. In the equal-productivity setting with M = N = 10, we varied the Bernoulli success
probability across u € {0.9,0.7,0.5,0.3,0.1}. Each configuration was run for 7 = 1000 rounds with
100 independent replicates under both social and asocial learning. All initial states were included, and
agents followed Thompson sampling with an uninformative prior Beta(1, 1). For each value of u, we
compared the final-round entropy between social and asocial learning conditions.

Results. Across all productivity levels, social learning consistently reduced entropy compared to
asocial learning (p < 0.001 for all contrasts), confirming that information sharing reliably produced
more concentrations. The magnitude of this reduction, however, depended on u. At u = 0.9, entropy
reduction was strongest (b = —0.364, 95% CI [-0.369, —0.358], p < 0.001; 11.13% reduction). As
u decreased, the effect gradually weakened: b = —0.341 at u = 0.7 (10.38% reduction), b = —0.324
at g = 0.5 (9.85% reduction), b = -0.319 at u = 0.3 (9.69% reduction), and b = —-0.292 at
u = 0.1 (8.85% reduction). The decline in effect size flattened at lower u, indicating diminishing
marginal impact once productivity signals became weak. Figure S5 illustrates these patterns. At
high productivity levels, asocial learning maintained relatively high entropy while social learning
converged rapidly. At lower productivity levels, both conditions exhibited slower convergence, but the
social-asocial gap remained robust regardless the ground truth.

Implication. These findings demonstrate that absolute productivity levels modulate but do not elimi-
nate the inequality-generating effect of social learning. When signals are strong, social learning rapidly
amplifies early stochastic successes into group-wide advantages, producing sharp concentration. When
signals are weak, convergence is slower and the social-asocial gap is somewhat narrower, but inequality
still reliably emerges. Mechanistically, this occurs because pooling information reduces exploration
and synchronizes choices: once any arm gains even a temporary advantage, it is collectively reinforced,
regardless of the baseline productivity level. This analysis implies that interventions targeting baseline
productivity (e.g., boosting or lowering group quality) cannot fundamentally prevent stratification.
The underlying driver is social learning itself, not the absolute quality of options. In the main text,
we selected p = 0.9 as the baseline, since this parameter ensures all arms are equally high-quality and
allows a more ironic effect if inequality still emerges as a consequence of social learning.
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3.5 Sampling initial states

Overview. In addition to priors and sampling strategies, outcomes in the multi-agent system can be
influenced by the initial distribution of agents across options. We therefore tested whether different
starting states —ranging from concentrated allocations to evenly distributed ones — affect the extent to
which social learning generates inequality. This analysis evaluates the robustness of our findings to
exogenous differences in initial conditions.

Setting. We fixed the environment to M = N = 10 agents and arms in the equal-productivity setting
u = 0.9. Agents followed Thompson sampling with an uninformative prior Beta(1, 1) for 7 = 1000
rounds with 100 independent replicates. We examined 42 distinct initial states, defined as the unlabeled
occupancy pattern of agents across arms—ranging from fully concentrated allocations (all 10 agents
on a single arm) to maximally even allocations (one agent per arm), with intermediate cases such as
(4,4,2) or (7,2,1) (see Table S1). For each initial state, we compared the final-round entropy between
social and asocial learning conditions.

Results. Across all 42 initial states, entropy consistently declined more under social learning than
under asocial learning. Concentrated starting states produced larger early disparities and faster conver-
gence, whereas evenly distributed states delayed the onset of concentration. Despite these differences
in early dynamics, all trajectories converged to the same qualitative outcome by the end of 1000
rounds: social learning yielded more concentrated outcomes than asocial learning. The magnitude of
the social-asocial gap varied somewhat across initial states, but the direction of the effect was invariant.
Statistical analysis confirmed that entropy reduction showed no systematic correlation with the type of
initial state entropy (p > 0.1). Results are summarized in Figure S6, which displays the distribution
of entropy reductions across the 42 configurations.

Implication. These findings demonstrate that the emergence of inequality under social learning is
robust to initial fluctuations in allocation. Even when the system began without bias (one agent
per arm), social learning reliably amplified small stochastic differences into persistent disparities.
To ensure comparability across experiments and to avoid seeding artificial inequality, we therefore
standardized the initial condition in the main analyses to the maximally even allocation. This design
choice ensures that observed disparities can be attributed to the dynamics of social learning itself rather
than to exogenous asymmetries in starting conditions.
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Figure S6: Final-round entropy outcomes for all 42 distinct initial states in the M = N = 10 equal-
reward setting (u = 0.9). Each panel shows the entropy distribution for social vs asocial learning, with
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Table S1: All 42 distinct unlabeled occupancy patterns (initial states) for M = N = 10. Each tuple
indicates the number of agents assigned to each arm at ¢t = 0, sorted in nonincreasing order. The last

column reports the initial entropy H(0).

State Pattern H(0) State Pattern H(0)
1 (10,0,0,0,0,0,0,0,0,0) 0.00 22 (4,3,3,0,0,0,0,0,0,0) 1.59
2 (9,1,0,0,0,0,0,0,0,00 047 23  (4,3,2,1,0,0,0,0,0,0)0 1.92
3 (8,2,0,0,0,0,0,0,0,00 0.72 24 (4,3,1,1,1,0,0,0,0,0) 2.12
4 (8,1,1,0,0,0,0,0,0,00 092 25 (4,2,2,2,0,0,0,0,0,0) 2.00
5 (7,3,0,0,0,0,0,0,0,00 088 26 (4,2,2,1,1,0,0,0,0,0) 2.12
6 (7,2,1,0,0,0,0,0,0,00 1.16 27 (4,2,1,1,1,1,0,0,0,0) 2.32
7 (7,1,1,1,0,0,0,0,0,00 136 28 (4,1,1,1,1,1,1,0,0,0) 2.59
8 (6,4,0,0,0,0,0,0,000 097 29 (3,3,3,1,0,0,0,0,0,0)0 1.79
9 (6,3,1,0,0,0,0,0,0,00 130 30 (3,3,2,2,0,0,0,0,0,0) 1.99
10  (6,2,2,0,0,0,0,0,0,00 137 31 (3,3,2,1,1,0,0,0,0,0) 2.12
11 (6,2,1,1,0,0,0,0,000 157 32 (3,3,1,1,1,1,0,0,0,00 2.32
12 (6,1,1,1,1,0,0,0,0,00 192 33 (3,2,2,2,1,0,0,0,0,0) 2.32
13 (5,5,0,0,0,0,0,0,0,00 1.00 34 (3,2,2,1,1,1,0,0,0,0) 2.46
14  (54,1,0,0,0,0,0,0,0 137 35 (3,21,1,1,1,1,0,0,0) 259
15 (5,3,2,0,0,0,0,0,0,00 149 36 (3,1,1,1,1,1,1,1,0,0)0 2.79
16  (5,3,1,1,0,0,0,0,000 172 37 (2,2,2,2,2,0,0,0,0,00 2.32
17 (5,2,2,1,0,0,0,0,0,0)0 185 38 (2,2,2,2,1,1,0,0,0,0) 2.59
18 (5,2,1,1,1,0,0,0,0,0)0 2.05 39 (2,2,2,1,1,1,1,0,0,0)0 2.79
19 (5,1,1,1,1,1,0,0,0,00 232 40 (2,2,1,1,1,1,1,1,0,0) 2.99
20 (44,2,0,0,0,0,0,0,0 159 41 (2,1,1,1,1,1,1,1,1,0) 3.12
21 (4,4,1,1,0,0,0,0,0,00 172 42 (1,1,1,1,1,1,1,1,1,1) 3.32
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3.6 Summary of bayesian learner experiments

Across five experiments, we systematically evaluated alternative sampling strategies (Section 3.1),
scaling of agents and arms (Section 3.2), prior specifications (Section 3.3), baseline productivity
(Section 3.4), and variation in initial states (Section 3.5). Together, these analyses suggest that the
central phenomenon — social learning amplifies early fluctuations into persistent inequality — holds
robustly across a wide range of modeling assumptions.

The take-away is twofold. First, the precise decision rule and parameterization affect the magnitude
of inequality, but not its direction: social learning consistently reduces entropy relative to asocial
learning. Second, robustness checks highlight the levers that modulate this effect. Exploration
strategies (Section 3.1) and optimistic priors (Section 3.3) attenuate inequality, whereas pessimistic
priors amplify it to the extreme. Increasing the number of arms sustains diversity more effectively
than increasing the number of agents (Section 3.2). Initial fluctuations alter early trajectories but not
long-run outcomes (Section 3.5). Finally, baseline productivity levels scale the strength but not the
presence of the effect (Section 3.4).

For clarity and comparability, we therefore adopted a canonical setup in the main text: Thompson
sampling with uninformative priors, M = N = 10, maximally even initial allocation, and equal-
probability baseline 4 = 0.9. This configuration provides an unbiased and tractable benchmark. With
the support of the above supplementary analyses, we hope to demonstrate the full spectrum that could
be considered in future studies.
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4 Generative Agents

The explicitly defined belief updating and decision making process in Bayesian learners improves
interpretability, but it lacks realism. There is a burgeoning interest in using large language models
(LLMs) based generative agents to simulate social dynamics, and in this section, we provide a detailed
analysis of what would these agents do in our multi-agent multi-armed bandit environment. Moreover,
newer models are trained to align with egalitarian values to be fair and unbiased more than Bayesian
learners. These analyses also provide an interesting contrast to what would happen with fairness-
minded generative agents: Will they explore in the network more than rational Bayesian learners?

Background. In a series of pilot tests, we framed the task like a hiring game but otherwise minimal
instructions, and letting LL.Ms complete this task only through text. We did not introduce the underlying
mechanism of what it means to make sequential decisions in a multi-armed bandit structure, but instead
relied on the agents to infer the need to explore and exploit from context. However, early trials showed
two failure patterns that cast doubt on whether LLMs fully understand this task. In particular,
some agents selected options at random or in simple sequences and offered plausible but inconsistent
explanations. Other agents locked into one option and ignored available information about alternatives.
The parameter of all arms have equal expected productivity further obscured interpretation, since
random switching can look like deliberate exploration, or simply not understanding. These observations
motivated systematic prompt design to guide models toward making meaningful decisions. Below, we
summarize our in-depth analysis of LLM behaviors under various prompting strategies in Section 4.1,
and the finalized design of the LLM multi-agent multi-armed bandit experiment in Section 4.2.
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4.1 Analyzing LLMs for bandit tasks

Challenges. With naive prompting, early trials revealed systematic challenges that cast doubt on
whether the LLM agents truly understood the decision task. First, many agents produced random
or sequential choices (e.g., cycling through options in order). While their textual justifications often
sounded plausible — framing choices as “trying out a new candidate” or “continuing exploration” —
their reasoning contained logical inconsistencies, suggesting post-hoc narratives rather than genuine
strategy. Second, other agents fell into rigid exploitation, repeatedly selecting the same option even
when shared outcome information clearly indicated that another option yielded higher rewards. In
these cases, they effectively ignored exploration altogether. In these cases, agents appeared to neglect
exploration entirely. These behavioral patterns mirror a key difficulty also present in human experi-
ments: distinguishing between meaningful task comprehension and superficial behavior. In human
studies, researchers can administer comprehension checks or debriefing surveys to directly assess
whether participants have understood the instructions. For LLMs, by contrast, no such verification is
possible. Their responses are limited to generated text, which may sound coherent without reflecting
genuine reasoning [4]. The parameter of all arms have equal expected productivity further obscured
interpretation, as it was unclear whether observed switching reflected deliberate exploration or ran-
dom fluctuation, and whether exploitation represented rational preference or misunderstanding of the
broader task structure.

Related work. A closely related study [5] examined LLM decision making in single agent bandit
settings. The authors found most configurations failed to balance exploration and exploitation and
often converged to either greedy over exploitation or random under exploration. Only one configuration
achieved stable performance. That configuration combined GPT 4 at zero temperature with summarized
interaction history, reinforced chain of thought reasoning, and suggestive framing. These findings
highlight the importance of structured prompts, compact summaries of past outcomes, and deterministic
decoding. Our study builds on these insights and extends them to multi-agent interaction and to an
applied hiring context where shared information introduce additional complexities.

Prompt strategies. The observed shortcomings motivated an explicit program of prompt engineering
with the objective of achieving both task comprehension and effective performance. Given the large
design space of possible prompts, we adopted a procedure that provided deterministic guidance for
modifications based on behavioral diagnostics. We systematically refined prompts using a consistent
set of evaluation metrics to identify failure modes and then made targeted edits that addressed each
failure without altering the environment. The workflow proceeded iteratively.

We began with baseline prompts that provided minimal guidance. We analyzed behavior after each
test using the predefined diagnostics, see metrics below. We then introduced targeted modifications
to address specific failures. Next, we tested each modification in isolation to disambiguate which
modification lead to which type of failures. We repeated this cycle until agents demonstrated stable
understanding and performance in the multi-agent multi-armed bandit setting.

To avoid confounds, we decomposed the overall problem into a sequence of tasks with progressively
increasing complexity. Agents were required to master simpler single agent problems before advancing
to multi agent settings. When learning signals were too weak, we replaced equal expected productivity
with unequal productivity to first make sure our prompts could guide agents to properly explore and
exploit when navigating in an environment with a ground truth. This staged design enabled incremental
acquisition of the behaviors required for the full problem and ensured a systematic improvement of
LLM behavior without introducing confounding changes to the task or environment.
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4.1.1

Variations and metrics

Variations. We systematically tested a range of prompt and model configurations to evaluate how
LLMs perform in bandit-style decision tasks. The variations included:

1.

Summarized History (Means vs. Counts): Instead of providing raw sequences of past out-
comes, we supplied either per-arm averages of rewards (means) or success/failure counts. Sum-
marized statistics reduced arithmetic errors, directed the model to attend to relevant information.

Immediate Feedback Memory: Prompts included the agent’s most recent choice and reward,
together with a minimal carry-over memory. This step ensured that the LLM could anchor its
reasoning on immediate feedback while retaining short-term context.

Reinforced Chain-of-Thought (CoT) Reasoning: Prompts encouraged step-by-step reasoning,
guiding the LLM to weigh exploration—exploitation trade-offs more explicitly.

Suggestive Framing: Prompts were framed in ways that subtly emphasized the importance of
balancing exploration and exploitation, giving a slice of heuristics to assist model decisions.

. Model Temperature: We compared deterministic outputs (temperature 7 = 0.0) with more

stochastic ones (" = 0.7). Zero temperature reduced randomness, yielding more consistent
behaviors, while higher temperature sometimes destabilized behavior.

Model Scale: We compared GPT-40 and GPT-40-mini to assess sensitivity to model size.

Metrics. Following [5], we employed surrogate statistics to diagnose whether LLMs successfully
balance exploration and exploitation over repeated trials:

Suffix Failure Frequency (SuffFailFreq): The fraction of replicates where the best arm is never
chosen after a certain round ¢. Persistent suffix failures indicate long-term failure to explore.

MinFrac: The minimum fraction of pulls received by any arm across rounds. When scaled by
K (the number of arms), K - MinFrac close to 1 indicates uniform-like failure (treating all arms
equally, without eliminating suboptimal options).

GreedyFrac: The proportion of rounds in which the model selects the arm with the highest
empirical mean reward, reflecting over-exploitation tendencies.

Median Reward: The median of time-averaged rewards across replicates, expected to stabilize
near 0.5 if exploration and exploitation are balanced.

These metrics provide more diagnostic power than raw cumulative rewards, which are often too
noisy at moderate horizons. They allow us to distinguish between specific failure modes such as suffix
failures and uniform-like failures.

Failures and modifications. Using these metrics, we identified several recurring failure modes (see
evaluation results in Section 4.1.2 and corresponding modifications in Section 4.2). First, nonzero
Suffix Failure Frequency indicated inadequate summarization of past outcomes, which we addressed
by refining how history was presented. Second, MinFrac values of zero revealed that some arms
were entirely ignored, for which we refined prompts to encourage exploration of underutilized options.
Third, extreme GreedyFrac values suggested imbalances between exploration and exploitation, and we
clarified the framing of this taks. Finally, unstable Median Rewards reflected overly random behavior,
which we mitigated by lowering temperature and by providing additional contextual scaffolding.
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4.1.2 Experiments and results

To evaluate LLM performance systematically, we adopted a phased approach that gradually increased
the complexity of the task. We began with a simple single-agent bandit setting (Phase 1), then
introduced domain framing in the hiring context (Phase 2). Next, we scaled to a multi-agent binary
bandit (Phase 3), and finally to a multi-agent hiring scenario with feature-based candidates (Phase 4).
This progression from simple to complex ensured that LLMs mastered basic explore—exploit trade-offs
before advancing to collective decision making under social learning. Each phase provided insights into
failure modes and guided prompt refinements, yielding the finalized design for the main experiment.

Phase 1: Single-Agent Binary Bandit (Asocial learning). A single LLM agent interacted with a
four-arm bandit over 100 rounds (10 turns). We tested GPT-40 and GPT-40-mini at two temperature
settings (0.0 and 0.7). To probe the role of prompt design, we compared seven variants: (1) summarized
history with per-arm means, reinforced Col, suggestive framing, and memory-in-context; (2) same
as (1) but without per-arm means; (3—4) versions with reduced framing; (5-6) versions without CoTl
or history; and (7) without memory. Only GPT-40 with temperature 0.0 under prompts (1) and (2)
consistently balanced exploration and exploitation, reflected in stable Median Rewards and nonzero
MinFrac. All other conditions exhibited failures: random or repetitive choices (Failure Type #2),
unstable Median Rewards (Failure Type #4), or inability to converge (Failure Type #1). We adopted
prompt (1) with temperature 0.0 as the baseline, with summarized history, CoT, and suggestive framing.

Phase 2: Single-Agent Hiring Bandit (Asocial learning). We adapted the bandit into a hiring task:
the LLLM acted as a hiring manager choosing among four anonymized candidates. Rewards followed
Bernoulli draws with fixed but hidden probabilities. We retained GPT-40 (T' = 0) and tested two
prompt versions: (1) directly adapted from Phase 1, using a hiring cover story; (2) same but without
explicit mention of the probabilistic reward distribution. Version (1) successfully balanced exploration
and exploitation: agents explored candidates and exploited successful ones. Version (2) often failed to
exploit prior successes, producing higher Suffix Failure and unstable Median Rewards. Accordingly,
we decided to use Version (1), given that explicit probabilistic framing seems to be essential for LLM
comprehension of explore—exploit trade-offs in the hiring contexts.

Phase 3: Multi-Agent Binary Bandit (Social learning). Four LLM agents operated in a binary
bandit environment with four arms for 40 rounds (10 turns), under social learning. Each agent saw
pooled outcomes across agents. Prompts built on Phase 1 but were adapted to include shared history.
LLM agents demonstrated partial coordination: GreedyFrac and Median Rewards stabilized under
prompt (1), but failures emerged when history was poorly summarized, leading to ignored arms
(MinFrac = 0, Failure Type #2). We refined prompts to highlight both individual and collective
outcomes, ensuring agents incorporated shared evidence. This change improved coordination among
agents, and stabilized exploration—exploitation dynamics in the multi-agent setting.

Phase 4: Multi-Agent Hiring Bandit (Social learning). Extending Phase 3, four LLM agents acted
as hiring managers choosing among four candidates with two categorical attributes. Candidate success
probabilities varied by interaction with firm profiles. The experiment ran for 40 rounds (10 turns)
under GPT-40 (T = 0). Prompts summarized outcomes by candidate feature and firm. Under social
learning, agents updated strategies from both personal and shared outcomes. However, some agents
ignored unexplored candidates or miscalculated probabilities, reflected in low MinFrac and unstable
Median Rewards. We revised prompts to explicitly include per-firm probability estimates and to mark
unobserved options as “unknown” (prior 0.5). This change encouraged systematic exploration of
under-sampled options and improved convergence toward optimal hiring strategies.
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Table S2: LLM prior experiment results.

Phase Model Temp. Hist! Mem.? CoT® Frame*| SFF> MinFrac® GreedyFrac’ Median R.3| Success
1 GPT-40 0.0 Means X v v 0.0 0.13 0.91 0.54 v
GPT-40-mini 0.0  Means v v 0.2 0.13 0.94 0.94
GPT-40 0.0 Counts X v v 0.0 0.15 0.76 0.52 v
GPT-40-mini 0.7 Means X v v 0.0 0.01 0.90 0.81 X
GPT-40 0.7  Means X v v 0.0 0.24 0.84 0.67 X
GPT-40-mini 0.0  Counts v v v 0.0 0.13 0.60 0.54 X
GPT-40 0.0 Counts v v v 0.0 0.15 0.93 0.49 v
GPT-40-mini 0.0 Counts v v X 0.0 0.14 0.81 0.64 X
GPT-40 0.0 Counts v v X 0.0 0.17 0.91 1.0 X
GPT-40-mini 0.0 X v v X 0.0 0.51 0.48 0.39 X
GPT-40 0.0 X v v v 0.0 0.34 0.63 0.06 X
GPT-40-mini 0.0  Counts X X v 0.5 0.0 0.76 0.54 X
GPT-40 0.0 Counts X X v 0.0 0.09 0.91 0.67 X
2 GPT-40 0.0 Means v v v 0.0 0.14 0.92 0.7 v
GPT-40 0.0 Means v v X 0.1 0.08 0.89 0.87 X
3 GPT-40 0.0 Means v v v ‘ 0.0 0.14 0.92 0.56 ‘ v
4 GPT4o 00 Means v v/ |00 016 0.91 071 | v

! Hist. = History input. Either per—arm averages of rewards (Means) or raw success/failure counts (Counts).
2 Mem. = Last-round reward and short memory of prior outcomes.

3 CdT = Reinforced chain-of-thought reasoning.

4 Frame = Suggestive framing emphasizing exploration—exploitation trade-offs.

5 SFF = Suffix Failure Frequency: proportion of trials where the optimal arm is not chosen in later rounds.
6 MinFrac = Minimum fraction of times any arm is selected; captures whether all options are explored.

7 GreedyFrac = Fraction of choices of the immediate best arm; reflects exploitation tendency.

8 Median R. = Median of time-averaged rewards across trials.

v = feature present, X = feature absent. Metrics follow [5].
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4.1.3 Summary

All empirical results are summarized in Table S2. Iterating through the four phases with modified
prompt strategies, we converged on a successful LLM configuration, for which we use in the main
experiment: GPT-4o with temperature fixed at 0.0, summarized history presented as per-arm means
(without raw sequences or last-round memory), reinforced chain-of-thought reasoning, and suggestive
framing. This combination consistently balanced exploration and exploitation, as reflected in stable
median rewards, nonzero MinFrac values, and low suffix failure frequencies. Together, these results
validate that prompt scaffolds are not optional but essential: only with carefully designed guidance
can LLMs reliably reproduce the dynamics of exploration, exploitation, and information sharing that
underpin inequality in multi-agent bandit settings. Next, we report the full details of prompt design
choices and implementations in Section 4.2.
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4.2 Simulating social learning in LLM bandit

The finalized experimental setup for our main study combined targeted prompt engineering with a
moderator—agent interaction loop conducted entirely in natural language. In this session, we provide
relevant details for a quick preview and will make the repo publicly available for future research.
There are three layers of this design: First, a centralized moderator summarizing the history of
observed outcomes (conditioned on whether agents were in the social or asocial learning condition),
issuing queries to the agents, collecting their text-based responses, and recording the resulting choices
and rewards Section 4.2.1. Second, natural language instructions via prompts to guide model to make
decisions. This step is inspired by our in-depth analysis above Section 4.1, including: summarized
history, reinforced chain-of-thought reasoning, suggestive framing, a memory anchor for the most
recent choice and outcome, and a fixed temperature of zero Section 4.2.2. Third, implementation
details such as number of agents and number of arms, as well as the two experimental conditions:
different versus identical expected productivity of arms, and social versus asocial learning Section 4.2.3.
A schematic illustration of this experiment is shown in Figure S7, and example prompts in Section 4.2.4.

® & - :
? Prompt Engineering L]
® &
@ ﬁ @ Query
@ ﬁ ) -
] A [ ]
_ @ Pull arm
@ .: (2) Arm selection {é}_ > ?
® & > —ITT —— =™
@ ..] Moderator (4 Arm reward &
@ 6 (©® Belief update °
® & < (@) 2
® & : a
(& Collect and summary :
Agents Candidate Groups

rewards from multi-agent

Figure S7: Schematic of the LLM-agent experiment loop. A moderator system summarizes past
outcomes, queries each LLM agent for its next hiring decision, and records text-based responses under
either social or asocial conditions.
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4.2.1 Moderator and agent loop

Each experiment unfolded as a repeated interaction between a moderator and a set of agents. At the
start of each run, M arms and N agents were initialized with uninformative Beta(1, 1) priors. At
each round ¢, the moderator provided a history of past outcomes: in the asocial learning condition,
each agent observed only its own prior choices and rewards, while in the social learning condition, all
agents also observed aggregated statistics from the group, including expected values per arm, number
of pulls, and success rates. Each agent then received a natural-language prompt containing several
elements: the last-round choice and outcome (memory scaffold), a summarized history table using
per-arm means rather than raw sequences, framing language emphasizing the exploration—exploitation
dilemma, an instruction to “think step by step” to encourage explicit reasoning, and an explicit output
format <Answer> CandidateX </Answer> where X € {1,...,M}. Agents replied with free-text
explanations followed by a tagged choice, which the moderator parsed from the <Answer> tag. Each
chosen arm yielded a Bernoulli reward according to its latent success probability, and the process was
repeated for T rounds.

4.2.2 Prompting strategies

The finalized prompt design included five key features. First, summarized history in the form of
per-arm averages prevented arithmetic drift and kept inputs concise. Second, a memory scaffold
specifying the last-round choice and reward anchored reasoning to immediate feedback. Third, prompts
instructed the model to engage in chain-of-thought reasoning before committing to an answer. Fourth,
natural-language cues highlighted the exploration—exploitation trade-off without prescribing a solution,
providing suggestive framing. Finally, a fixed decoding temperature of 7 = 0.0 enforced deterministic
outputs, eliminating spurious variability across runs.

4.2.3 Implementation details

To ensure comparability with the simulation experiments, we adopted the same baseline configuration:
M = N = 10 (ten agents and ten arms) with equal (¢ = 0.9) and differing (u = 0.9 to 0.1) latent
reward probabilities. Accordingly, all experiments used the GPT-40 model at zero temperature.
Each run lasted 7 = 200 rounds and was repeated ten times. This design reflected two practical
considerations. Deterministic decoding removed most sources of stochasticity, reducing the need for
a large number of replicates. Moreover, prior simulation results indicated rapid convergence to a
dominant arm, such that 200 rounds were sufficient to capture the emergence of inequality dynamics
while controlling computational costs. To avoid unintended biases from semantic priors, candidate
groups were represented symbolically as Candidatel — Candidatel0.
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4.2.4 Prompt example
An example prompt used in the social learning condition is reproduced below.

/* System Prompts: Explain the game setup and rules clearly so the LLM

understands its objectives and can make rational decisions. */

{
"role" : "system",
"content" : "You are one of several hiring managers tasked with
maximizing your firm’s rewards by hiring one of 10 candidates groups
labeled Candidatel-Candidatel®. Each candidate group is associated with
a Bernoulli distribution that gives a reward feedback of either failure(0)
or success(1), with unknown probabilities. Your goal is to maximize your
firm’s total reward over a series of rounds by deciding which candidate
group to hire next, based on the feedback provided after each round.
At each time step, you will receive a summary of the results from both
your own choices and the choices made by other firms. You must decide
which candidate group (Candidatel-Candidatel®) to pull, based on your
understanding of the rewards so far. Let’s think step by step to make
sure we make the best decision. After deciding, provide your final answer
within the tags <Answer>CANDIDATE</Answer> where CANDIDATE is one of
Candidatel-Candidatel®."

/% Assistant Prompts: Choice made by the agent in last round. */
{ "role": "assistant", "content": "Candidatel."},

/* User Prompts: Provide information updates (a summary of all previous rounds).
Ask the LLM to make a choice for the next round. */
{ "role": "user",
"content": "So far you have hired 22 times. Your previous choices and
rewards, along with shared information from other firms, are summarized
as follows:
Candidatel: 69 times, average reward: 0.91
Candidate2: 23 times, average reward: 0.86

Candidatel®: 16 times, average reward: 0.73
Which candidate group will you choose next? Remember, You MUST provide your
final answer within the tags <Answer>CANDIDATE</Answer>."}

Highlight legend: green = Suggestive framing cyan = Summarized history with means  yellow =
Chain-of-thought  pink = Social learning hint orange = Symbolized representation
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5 Human Participants

To study the empirical relevance of our hypothesis, that social learning creates more collective bias
than asocial learning, we designed a multi-player online hiring experiment. We recruited groups
of 10 human participants, role-playing as members of a hiring committee. They evaluated many
job candidates and made hiring decisions based on their own (asocial) and everyone else’s (social)
hiring experiences. To alleviate existing bias, this study used artificial labels of job candidates, that
is color of the icon to represent their group identity. The main dependent variables are the same as
Bayesian learners and language agents, efficiency and inequality as defined in Section 2, and the main
independent variables are the market structure (equal versus unequal productivity) and the structure
of the agents (asocial versus social). To supplement the main results, in this section, we cover detailed
design choices in Section 5.1, results from a pilot study in Section 5.2, descriptive analyses of the main
study in Section 5.3, and additional and qualitative analyses of the main study in Section 5.4.
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5.1 Study design and implementation
5.1.1 Pre-registration and approval

A pre-registration for the study is available online at the Open Science Framework (OSF) at https:
//0sf.io0/58nbt/. The research protocol was approved by the Institutional Review Board (Protocol
No. 24-1184). Experimental framework (via Empirica [1]), data analysis scripts, and anonymized
data are publicly available in the same repository.

5.1.2 Participants and recruitment

We recruited N = 2000 participants from Amazon Mechanical Turk via the CloudResearch platform.
Eligibility required participants to be born in the United States, at least 18 years old, and proficient
in English. Recruitment targeted a balanced gender distribution, and participants were screened using
CloudResearch’s quality filters (approval rating > 90%). Repeat participation was disallowed. Data
collection occurred across multiple recruitment sessions between April 8, 2025, and June 2, 2025.
Demographic information (age and gender) was recorded and analyzed as part of the robustness checks.
The average completion time was 20 minutes. Participants were compensated by a $5 base payment
plus a performance-contingent bonus of up to $1, determined by their cuamulative rewards in the game.

5.1.3 Experiment structure

The human experiment was implemented on Empirica, an open-source JavaScript framework for
running multiplayer interactive experiments and games directly in the browser [1]. Empiricais designed
for real-time, multi-player behavioral studies, allowing researchers to create complex interactive designs
without custom server engineering while maintaining statistical rigor. This experiment follows a well-
defined life cycle. After reading an introductory screen, participants enter a virtual lobby, where
they wait until the entire group has completed the introduction. Each study is organized as a game
composed of multiple rounds, and each round contains one or more stages. The game proceeds in
a tightly synchronized sequence: all players must finish the current stage—for example, making a
decision or reviewing shared outcomes—before the platform advances the whole group. When every
participant completes the final stage of a round, the system moves to the next round; after the last round,
it proceeds to the exit steps, where players complete tasks such as a brief survey at their own pace.
This lock-step progression ensures that all participants remain perfectly coordinated and experience
the experiment in real time together. By handling group matching, real-time updates, and automatic
data logging, this platform provides the technological foundation for our multiplayer experiment.

5.1.4 Experiment procedure

Within the Empirica framework we built a custom interactive game, Together Hire, to parallel the multi-
agent simulations described in earlier sections. In each session, a group of ten participants acted as
members of a hiring committee making 50 sequential hiring decisions among 10 color-coded candidate
groups, a design intended to avoid pre-existing social biases. Participants were randomly assigned,
upon arrival and consent, into groups of 10 and placed in one of four experimental conditions: unequal
productivity with asocial learning, unequal productivity with social learning, equal productivity with
asocial learning, and productivity reward with social learning.

The user interface guided participants through a fixed sequence of stages: Introduction, Game
Introduction, Tutorial, Main Choices, Group Allocation, and Exit Survey. It provided clear instructions
while presenting a single hiring scenario that flexibly adapted to the four experimental conditions
described above. The following subsection details the content and function of each stage.

31


https://osf.io/58nbt/
https://osf.io/58nbt/

Introduction and waiting room. Sessions began once all 10 participants had entered the “game
room” and confirmed readiness. Participants were presented with written instructions explaining the
hiring task, the binary success/failure outcomes, and how their bonus is calculated and rewarded. First,
the Introduction screen (Figure S8a) welcomed participants to the “Hiring Boardroom™ and provided
an overview of the task. It emphasized their role as hiring managers, the presence of ten candidate
groups, and the link between performance and monetary bonus. Next, the Game Introduction screen
(Figure S8b) described the main mechanics of the task. Participants were told that each round they
would make a hiring decision, receive binary success/failure feedback, and accumulate bonuses of one
cent per success. The interface also specified whether the condition involved social learning (shared
group-level outcomes) or asocial learning (private outcomes only).

Tutorial. Before the main hiring game began, participants completed a single practice round to
become familiar with the interface. The Tutorial screen (Figure S8d) displayed ten brightly colored
boxes, each representing a candidate group; below each box two counters showed the cumulative
numbers of successes and failures. An animated arrow on the screen, accompanied by brief on-screen
instructions (Figure S8d), guided participants to click on a pre-selected box—thereby making a hiring
decision. This brief exercise demonstrated the mechanics of the hiring task and ensured that all
participants entered the main game from an identical initial state, matching the starting conditions used
in the Bayesian and generative-Al simulations.

Main game. Participants then played 50 consecutive rounds of the hiring task. Similar to the Tutorial
screen, the Choices screen (Figure S8e) displayed ten colored boxes representing the candidate groups,
with two counters beneath each box showing the cumulative numbers of successes and failures. In
the social learning condition these counters reflected the pooled outcomes of all participants, whereas
in the asocial learning condition they reflected only the individual’s own outcomes. At every round
participants selected one candidate group to hire, basing their decisions on the feedback and beliefs
formed from previous outcomes. A countdown timer at the top of the screen allowed up to 30 seconds
for each decision and displayed the participant’s cumulative bonus; a warning banner appeared when
only ten seconds remained. After all participants submitted their choices, the system automatically
advanced the entire group to the next round. And the screen presented the updated hiring summary
through the counters, providing the information participants relied on to guide their next decision.

Additional tasks and exit survey. After the main game, participants completed an additional group-
allocation task to obtain an explicit measure of their beliefs about each candidate group’s productivity
beyond what could be inferred from their hiring decisions. On the Group Allocation screen (Fig-
ure S8c¢), participants were asked to allocate 100 hypothetical slots across the ten candidate groups
according to their perceived relative productivity. The session concluded with an exit survey, which
collected demographic information and invited participants to describe the strategies they used during
the experiment. The detailed contents of this exit survey are provided below.
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Congratulations! You've been appointed as a key member of the hiring committee.
Your task is to evaluate and select candidates from 10 different groups.

@ Welcome to the Together Hii

Every decision you make will provide valuable insights into the productivity of each
group. Your goal is to identify the most capable groups of workers and maximize
your bonus! &

_I In some rounds, you will see others' choices and results for reference. In others,
you'll rely solely on your own judgment. Stay observant and strategic to uncover the
strengths of each group and make the best decisions. .

T The waiting time may be long. Please be patient. Once the game starts, please
DO NOT Exit as it will affect the entire game for all players.

(a) Introduction screen.

Post-Survey 03.09

Group-Allocation

Group Allocation

@ Task: Hiring the Best Candidate

You will be asked to make 50 hiring decisions. In each round, you can select one
candidate from a group. Each group has consistent productivity, and your goal is to
discover which groups are the most productive.

& For each successful hire, you will earn a bonus of 1 cent in addition to your base
payment. The more successful hires you make, the greater the bonus you will earn, up
to a maximum of 50 cents.

@: This round includes communication. After making your decision, you will see the
choices and results of other committee members. You can use this shared
information to refine your decisions.

(b) Game introduction screen.

BONUS

15 =

& Congratulations! This is the final task of the game. The closer your answers are to the true productivity, the higher your bonus will be! &

After observing the groups' performance during the game, allocate 100 hires across the groups based on their productivity.

Remaining Slots: 100

- - -
Success: 3 Success: 14 Success: 15
Failures: 1 Failures: 2 Failures: 1

0¢ 0°¢ 0¢

- - -
Success: 3 Success: 3 Success: 6
Failures: 2 Failures: 1 Failures: 1

o< 0c¢ 0c

Submit Allocation

a
Success: 4 Success: 4
Failures: 1 Failures: 1
0¢ 0¢

- -
Success: 3 Success: 2
Failures: 2 Failures: 2

0¢ 0c

(c) Group Allocation screen.
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BONUS

Communication Round 6 .
choice 000 1

Tutorial Round .
choice 00'38 0 -

Hiring Game: Select Your Candidate

A Select the candidate you believe is most productive. .
Tutorial: Learn How to Play

Follow the instructions in this tutorial round. Please select the indicated one. & & Hurry upl! Only 1 seconds left to make your. choice!

v
® [ [ d [
® [ 4 o o [ ) - - - -
- - - - -
3 3 15 4 )
1 1 1 1 1 Failure: 1 Failure: 1 Failure: 1 Failure: 1 Failure: 1
Failure: 1 Failure: 1 Failure: 1 Failure: 1 Failure: 1
o [ d o o [ d
[ 4 [ [ o - - - - -
o - - -
3 3 6 3 2
1 1 1 1 1 Failure: 2 Failure: 1 Failure: 1 Failure: 2 Failure: 2
Failure: 1 Failure: 1 Failure: 1 Failure: 1 Failure: 1
(d) Tutorial screen. (e) Choices screen.

Figure S8: Screenshots of the experimental interface.
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Exit survey. Participants completed the following exit survey at the conclusion of the experiment.
Responses were required to receive full compensation.

Please submit the following code to receive your bonus: [Player ID].
Your final bonus is in addition to the $1 base reward for completing the HIT.

(Page 1 of 2)

- Age: 1-100

- Gender: Female, Male, Other (Please specify)

- Race: African, Asian, Caucasian, Latin/x, Native American, Mixed-Race,
Other (Please specify)

- Education: Did not graduate from high school, High School, Some College,

College, Graduate Professional School, Other (Please specify)
- Primary Country/Region of Residence
- Political Orientation (1 = Extremely Conservative, 6 = Extremely Liberal)

(Page 2 of 2)
- Have you participated in similar experiments before? Yes/No
If yes: Please share details such as when, where, who organized it (e.g.,
university, company, etc.), and a brief description of the experiment.
- Would you like to participate in follow-up studies? Yes/No
- How engaging was the game? (1 = Not engaging, 5 = Very engaging)
- How clear were the instructions? (1 = Very unclear, 5 = Very clear)
- How did you approach decision-making in this experiment?
(e.g., based purely on success, based purely on failure,
weighting success more, weighting failure more,
relying on observations, analyzing trends, intuition, trial and error)
- What key factors influenced your decisions?
(e.g., consistency, personal experience, group experience)
- What motivated you to participate in this experiment?
(e.g., monetary incentive, interest in research, curiosity)
- Did you encounter any technical issues or distractions? Yes/No
If yes: Please describe when, what happened, and any error messages.
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5.2 Pilot study

Before launching the main experiment, we conducted a pilot study to validate the design with a smaller
group size. The game was identical to the main setup, except that each group consisted of five
participants instead of ten. We recruited N = 200 participants in total, organized into 10 groups per
experimental condition (equal vs. unequal productivity X social vs. asocial learning). Data collection
took place between February 12 and February 16, 2025. Participants were recruited from Amazon
Mechanical Turk via CloudResearch. Eligibility required being born in the United States, at least
18 years of age, and proficient in English. Recruitment targeted a balanced gender distribution, and
participants were screened using CloudResearch’s quality filters (approval rating > 90%). Repeat
participation was disallowed.

Overall, results closely mirrored those observed in the main experiment, detailed in Figure S9.
When worker quality varied, social learning improved hiring efficiency: average rewards increased by
14.08% (95% CI = [6.79, 21.11], p = 0.002). When all groups were equally productive, however,
participants still converged disproportionately on a single group of workers (b = —1.356, 95% CI =
[-1.856, —0.856], p < 0.001). Entropy declined monotonically throughout the game, ending 2.12x
lower in the social learning condition than in the asocial learning condition, corresponding to a
50.06% reduction in entropy. We presented this pilot results at the 11th International Conference of
Computational Social Science in Norrkoing, Sweden.

3.0
Overall +14.1% 3.0 -
2.5
2.5 + z
Tc o > 9 2.0
20‘;2 +15.9% §2.0— z
Middle o i . 1.5
20% +16.1% 15
Bottom 104
o
20% +5.2% 1.0
T 0.5 — T
0 50 100 150 200 250 0.5 T T 10 20 30 40 50
Cumulative reward Social Asocial Rounds
(a) Cumulative reward. (b) Final-round entropy. (c) Entropy trend.

Figure S9: Pilot study results.
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5.3 Preliminary analyses

With the scaled-up sample in the main experiment, we first examined whether participant demographics
systematically influenced our intended treatment outcomes by conducting a balance test.

Descriptive statistics Table S3 reports demographic characteristics across all participants. The
sample was broadly representative of U.S. online panels: age ranged from 18 to 100 (mean = 37.8).
Gender was nearly balanced (54% female, 48% male, < 1% other). The majority identified as
Caucasian (71%), with smaller proportions identifying as African (9.7%), Latinx (6.3%), Asian (6.2%),
and Mixed (4.2%). Education levels were heterogeneous, with 46% reporting college graduation,
25% some college, 17% graduate/professional school, and 10% high school. Political orientation
leaned slightly liberal, with 25% moderately liberal, 22% moderately conservative, and the remainder
distributed across other categories. These distributions indicate that the recruitment strategy acheived
a balanced and diverse participant pool of the US population, comparable other online studies.

Balance tests. We next tested whether demographic variables systematically predicted decision
outcomes. Specifically, we regressed final-round entropy on age, gender, race, education, and political
orientation, alongside the experimental manipulation of communication. The model explained little
variation (R? = 0.045, Adj. R> = 0.019). None of the demographic predictors consistently reached
statistical significance, indicating that participant background did not drive observed patterns. By
contrast, the social learning manipulation remained a robust predictor (b = —0.207, p = .005).
Together, these results confirm that differences in entropy reflect the causal effect of social learning,
rather than imbalances in demographic composition across conditions.

37



Table S3: Participant demographics and OLS results for final-round entropy

Value

Category Percent 95% CI p
Age Mean (Range) 37.8 (12-100) [-0.001, 0.011] 0.132
Gender Female 53.8% — —
Other 0.1% — —
Male 45.4% [-0.123,0.176] 0.724
Prefer not to say 0.7% [-2.366, 0.683] 0.279
Race African 9.7% — —
Caucasian 70.6% [-0.229, 0.234]  0.982
Latinx 6.3% [-0.278, 0.498] 0.579
Asian 6.2% [-0.517,0.215] 0.417
Mixed-Race 4.2% [-0.136, 0.696]  0.187
Native American 0.6% [-1.190, 1.272] 0.947
Other 1.2% [-0.418, 0.921] 0.460
Education College graduate 46.3% — —
Some college 25.1% [-0.118, 0.243]  0.496
Graduate/Prof. School 16.8% [-0.429, —-0.020] 0.031
High school 10.4% [-0.273,0.216] 0.818
Did not graduate HS 0.5% [-0.311, 1.807] 0.166
Other 0.2% [-1.079,3.128] 0.339
Prefer not to say 0.7% [-0.518, 1.725] 0.291
Political orientation Extremely Conservative 4.8% — —
Moderately Liberal 25.2% [-0.261, 0.456] 0.594
Extremely Liberal 22.3% [-0.124, 0.613] 0.194
Slightly Liberal 18.1% [-0.107, 0.631] 0.164
Slightly Conservative 15.4% [-0.009, 0.741]  0.056
Moderately Conservative 11.0% [-0.356, 0.440] 0.836
Prefer not to say 3.1% [-0.142,0.990] 0.142
Experimental condition Social (vs. Asocial) — [-0.352,-0.062] 0.005
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5.4 Additional analyses
5.4.1 Allocation

Overview. To measure participants’ beliefs about the relative productivity of candidate groups, we
administered a group-allocation task at the end of the hiring game (see Section 5.1). Participants
distributed 100 hypothetical positions across the ten candidate groups. This task provides a direct
quantitative measure of perceived group productivity beyond what can be inferred from hiring choices.

Methods. We analyzed only the equal-productivity conditions so that any differences in allocations
reflected learning dynamics rather than true productivity gaps. Allocations were analyzed at both the
individual and group level using the entropy metric introduced in Section 2. Higher entropy indicates
dispersed allocations, reflecting a belief that the groups are roughly equally productive; lower entropy
indicates concentrated allocations, reflecting a belief that only one or a few groups are more productive.

Results. Figure S10 shows the distribution of individual entropy. In the social learning condition,
19.9% of participants allocated all hires to a single group (entropy = 0). Most others also concentrated
heavily, with indices clustered between 0.5 and 2.0 and very few approaching the maximum value
(3.32). By contrast, in the asocial learning condition, 30.5% of participants showed entropy = 0
and the distribution was more diffuse, with many participants spreading hires in line with the true
underlying distribution. Figure S11 displays session-level patterns. Average group-level entropy was
lower in the social condition (M = 1.17) than in the asocial condition (M = 1.35), and in some sessions
collapsed to zero, indicating complete convergence on a single group across all candidate groups.

Summary. The group-allocation task corroborates the main behavioral findings: social learning
systematically reduces entropy, both within individuals and across groups, making participants more
likely to converge on a false belief, whereas asocial learning preserves greater dispersion and more
closely reflects the actual underlying distribution.
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(a) Asocial learning: individual-level allocation entropy.
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(b) Social learning: individual-level allocation entropy.

Figure S10: Distribution of individual-level Shannon entropy from the group-allocation task. Lower
entropy values indicate more concentrated allocations (stronger belief in a single group), while higher
values indicate more even allocations across groups. Color intensity (blue gradient) reflects the
frequency of observations within each entropy bin, and yellow highlights correspond to cases of exact
zero entropy (complete concentration on a single group).
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Figure S11: Group-level entropy from the group-allocation task. Each point represents one group’s
average allocation across 10 participants in a repeated session. Blue points indicate the social learning

condition, orange points indicate the asocial learning condition. Dashed vertical lines denote the mean
entropy within each condition.

40



5.4.2 Text analysis

Overview. To understand how participants themselves described their decision strategies, we ana-
lyzed the open-ended responses to two exit-survey questions:

* “How did you approach decision-making in this experiment?” (strategies)
* “What key factors influenced your decisions?” (key factors).

The goal was to characterize how participants describe their own reasoning and whether language
differs across social vs. asocial learning and equal vs. unequal reward settings.

Methods. Texts were lowercased, punctuation and numbers removed, and tokenized. We removed
standard English stopwords and a short domain-specific stoplist (e.g.,“candidate”, “round”, “group”
when used as UI labels). Tokens were lemmatized to merge verb and noun forms, and frequent or
bigrams with high Pointwise Mutual Information (PMI), such as win stay, trial error, and group info

LR N3 LI INT3

were identified (e.g., “win stay”, “trial error”, “group info”’). Minor synonym mapping merged close
variants (e.g., “success’/“win”; “observations”/“history”). For each question (strategy, key factors) we
then computed term counts and normalized rates r,, = 1000 X m, reporting the top unigrams
and bigrams by normalized frequency to create an overall lexical profile. Finally, we compared
frequency distributions across experimental conditions—(i) social vs. asocial learning and (ii) unequal
vs. equal reward structures—to identify which terms were more salient in each setting and to examine

how participants emphasized different strategies or factors depending on the learning environment.

Results. Asillustrate in Figure S12, the overall frequency distributions across all participants revealed
a consistent lexical pattern. For both key factors and strategies, the most common words were
“success/successes,” followed by “failure/failures,” “consistency,” “ratio/rate,” and “highest/higher.”
These patterns indicate that participants overwhelmingly prioritized past “success,” often framing
their decision strategy as hiring the option with the “highest success.” References to “failure” and to
success-to-failure “ratios” also appeared frequently, suggesting that participants tracked comparative
performance rather than relying on single outcomes. Condition contrasts further refined this picture.
In the social vs. asocial contrast, “success” remained the most frequent term in both settings, but the
secondary emphasis differed: in the asocial condition, “consistency’” ranked above “failure,” whereas
in the social condition this ordering was reversed. Moreover, references to “number” appeared nearly
twice as often under social learning as under asocial, and mentions of “highest” were about four
times more frequent. This pattern suggests that in social environments, participants were particularly
responsive to the absolute “number” of successes—Ilarge group-level counts appeared to amplify
salience and guided decision-making more strongly than personal routines of “consistency.” Finally,
in the equal vs. unequal reward comparison, differences were minimal. The overall profiles were stable
across reward structures, reinforcing that social learning, rather than baseline productivity differences,
was the primary driver of participants’ stated decision strategies and key factors.

¢

Implications. These patterns show that social learning amplified attention to absolute success counts.
Large group-level numbers of successes became especially salient and guided decision-making more
strongly than individual routines of consistency, regardless of the baseline reward structure.
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(b) Strategies

Figure S12: Top-10 word frequencies in participants’ open-ended responses: (a) key factors and (b)
strategies, shown across the four experimental conditions.

42



5.4.3 Analyzing trial-by-trial responses

Overview. To uncover how participants adapted their choices from round to round, we analyzed
every hiring decision using two complementary approaches. First, a rule-based labeling framework
classified each decision according to the type of information used and the immediate pattern of
reinforcement. Second, a model-based inference estimated, probabilistically rather than heuristically,
the relative influence of personal evidence, group evidence, and previous-round outcomes. Together,
these analyses reveal how social learning reshapes the micro-level strategies that drive convergence.

Methods. We used two complementary analytic approaches detailed as follows.

Rule-based labeling framework. Each decision received two complementary labels. A “judgment
label” indicated the informational basis for the choice, and a “pattern label” captured how the current
decision related to the participant’s previous outcome. Missing or inapplicable cases were coded as
N/A. In the asocial learning condition, participants had access only to their own history of choices and
outcomes. A decision was labeled “exploit” if it selected the option best supported by private evidence,
defined as the arm with the highest cumulative number of successes, the most favorable success—failure
ratio, or the fewest accumulated failures. Any other observed choice was labeled “explore”. Pattern
labels were derived solely from the immediately preceding round: repeating a successful choice was
“Win-Stay”, repeating a failed choice was “Lose—Stay”, switching after a failure was ‘“Lose—Shift”,
and switching after a success was “Switch—After—Win”. In the social learning condition, participants
additionally observed group-level cumulative outcomes. Judgment labels were extended to incorporate
collective information. A choice that matched the most popular option from the previous round was
labeled “majority-biased”; a choice that aligned with the arm best supported by cumulative group-
level evidence (highest number of successes, best success—failure ratio, or fewest failures) was labeled
“social-exploit”; and any other observed choice was coded as “contrarian”. Pattern labels were
assigned exactly as in the asocial condition, based solely on the individual’s own prior choice and
reward. This labeling framework yields individual-level profiles of strategy use, for example the
proportion of “exploit” versus “explore” or “majority-biased” versus “contrarian” choices, which can
be aggregated across conditions to compare decision-making tendencies between asocial and social
learning environments.

Model-based inference of decision rules. For each participant and each round we constructed a
state representation with three components: “own evidence’—the cumulative successes and failures
from that participant’s past choices; “group evidence”—the cumulative successes and failures aggre-
gated across all participants and available only in the social learning condition; and “previous-round
reinforcement”—whether the participant repeated or switched relative to their last choice and outcome.
We then generated posterior draws from Beta distributions Beta(«, 8) for each arm, separately for own
and group evidence. For each mechanism, the candidate “optimal” arm or arms were identified as
those with the highest sampled values across 200 posterior draws, and the participant’s observed choice
was compared to these candidates. If the choice matched the own-optimal arm(s) in a majority of
draws, it was labeled “own-based”; if it matched the group-optimal arm(s) in a majority of draws, it was
labeled “group-based”; and if it repeated the prior arm after a success, it was labeled “previous-round.”
Choices that fit none of these rules were classified as “other.” Because a single decision can reflect
multiple influences, we reported both “concurrent” labels—allowing multiple categories for the same
choice—and “exclusive” labels, which applied a fixed priority: “previous-round” > “own” > “group”
> “other”.

Results. Labeling decisions across the four experiments revealed systematic contrasts between learn-
ing conditions, as detailed in Figure S13.

Rule-based labeling. In the asocial learning condition, “exploitative’” judgments dominated across
both reward settings: the proportion of “exploit” decisions was substantially higher than “explore”,
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confirming that participants primarily relied on private evidence. The exploit rate was even higher
under the equal-reward setting, suggesting that when all candidates were equally good participants
were less inclined to test alternatives and instead reinforced initial preferences. Despite this aggregate
pattern, considerable heterogeneity remained across individuals, especially in the unequal-reward
setting: some participants displayed stronger exploratory tendencies while others quickly locked into
exploitation. These observations imply that private reward histories shaped idiosyncratic strategies,
but in the aggregate equal rewards encouraged even stronger reliance on exploitation. In the social
learning condition, judgments were shaped predominantly by collective signals. Across both reward
settings, “majority-biased” decisions overwhelmingly outnumbered “social-exploit” and “contrarian”
choices, underscoring the strength of conformity to group behavior. The frequency of majority-biased
decisions was even higher under unequal rewards, consistent with rapid convergence once a superior
group became apparent. At the individual level, however, distributions of strategies remained more
dispersed than in the asocial case, suggesting that participants weighed collective evidence differently.
Even so, inequality systematically emerged in the social condition, reflecting the amplifying force of
majority dynamics. Turning to sequential patterns, “Win—Stay” dominated in all four experiments,
consistent with limited exploration overall. Yet differences emerged between conditions. In the social
condition the proportion of Win—Stay responses was higher and clustered tightly around 0.7, showing
stronger reinforcement from shared outcomes. In contrast, the asocial condition showed a more uniform
distribution across participants, with some individuals displaying extremely high reliance on “Switch—
After—Win” (exceeding 0.9). By comparison, “Lose—Stay” and “Lose—Shift” occurred at relatively
similar rates, suggesting that failures did not decisively push participants toward consistent switching.
These contrasts highlight how social learning reinforces convergence by amplifying successful choices,
particularly when rewards are unequal and one group is perceived as superior.

Model-based inference. The model-based analysis corroborated and extended these labeling results.
Reliance on “own evidence” was similar across conditions (social: 26.3%, asocial: 28.1%), indicating
that participants consistently incorporated their own success histories. The key divergence emerged
in “group evidence”: under social learning, 20.5% of choices aligned with group-level posteriors,
almost double the rate in asocial learning (11.9%). Reinforcement from prior successes also increased
under social learning, with “Win—Stay” reaching 71.2% compared to 62.6% in asocial learning.
Conversely, the share of “other” strategies declined (20.3% vs. 29.1%), suggesting that social learning
reduced random or inconsistent choices, making participants’ behavior more consistent. To examine
heterogeneity across participants, we plotted the distribution of decision weights at the individual
level. Each participant’s choices were decomposed into the proportion of decisions attributed to “own-
based”, “group-based”, “previous-round”, or “other” rules (Figure S14). Although individual reliance
varied widely—from near-exclusive dependence on one rule to more balanced mixtures—systematic
differences between social and asocial conditions nevertheless emerged. Under social learning, reliance
on group evidence shifted upward and “Win—Stay” proportions clustered more tightly, indicating
stronger convergence despite persistent heterogeneity across individuals.

Summary. Taken together, these analyses demonstrate that social learning systematically shifts
weight toward collective evidence and amplifies reinforcement from prior successes, producing stronger
convergence dynamics relative to the more fragmented strategies observed in asocial learning.
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Figure S13: Judgment and sequential pattern labels across all experimental conditions.

45



overs{ | F|FLELE 14 g4 AT omers| - ELLH T o

Previous L K

sitia! ”“Ih Previous LRI IS O ol =:’.ZE"““.;“:

aro{ | LML F 457 aroun | § R FERERR AL

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Asocial condition. (b) Social condition.
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